期刊文献+

基于差分进化算法的Stewart-Gough平台的设计优化 被引量:1

Design Optimization of Stewart-Gough Platform based on Differential Evolution Algorithm
原文传递
导出
摘要 利用差分进化算法对Stewart-Gough平台进行优化。首先,对Stewart-Gough平台的对称结构和非对称结构进行了介绍;其次,通过综合考虑工作空间的限制,工作空间内存在奇异结构以及成本高这3个因素的影响定义了目标函数;最后,选定用于优化的工具为差分算法,并使用差分算法对Stewart-Gough平台进行了优化。优化结果表明,合理选择Stewart-Gough平台的结构及其参数,可达到最大化有效载荷或最小化每条腿上所需要的力(用以抵消外界施加在动平台上的力)的目的。与其他算法相比,差分算法具有较好的全局寻优能力,选用差分进化算法作为优化工具,优化及仿真过程借助MATLAB来实现。 The Stewart-Gough platform is optimized by using the differential evolution algorithm. Firstly,the symmetric structure and unsymmetric structure of Stewart-Gough platform are introduced. Secondly,the objective function is defined by considering the effects of the limited of workspace,the singularity con? gurations existing inside the workspace and the high cost. Finally,the tool selected for optimization is the differential evolution algorithm,and it is used to optimize the structure of Stewart-Gough platform. The results of optimization suggests that the aim of maximize the payload and minimize the forces at each leg needed to counteract external forces applied to the mobile platform can achieved by appropriate select the Stewart-Gough platform structure and parameters. Compared with other algorithms,the differential evolution algorithm has better global search ability,thus select the differential evolution algorithm as optimization tools. The optimization and simulation process are achieved by using MATLAB.
出处 《机械传动》 CSCD 北大核心 2018年第3期66-71,共6页 Journal of Mechanical Transmission
关键词 差分进化算法 Stewart-Gough平台 优化 Differential evolution algorithm Stewart-Gough platform Optimization
  • 相关文献

参考文献6

二级参考文献45

  • 1颜学峰,余娟,钱锋,丁军委.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版),2006,32(1):94-97. 被引量:33
  • 2刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 3COELLO C A. Evolutionary multi-objective optimization: a historieal view of the field [J ]. IEEE Computational Intelligence Magazine, 2006, 1 (1) : 28 - 36.
  • 4RAINER S, PRICE K. Differential evolution - a simple and efficient heuristic :for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11 (4) :341 - 359.
  • 5PRICE K. Differential evolution vs the functions of the 2nd ICEO [C]//IEEE International Conference on Evolutionary Computation. Indianapolis, 1997:153 - 157.
  • 6ABBASS H A ,SARKER R,NEWION C. PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation. Piscataway, 2001 : 971 - 978.
  • 7ABBASS H A, SARKER R. The pareto differential evolution algorithm[J]. International Journal on Artificial Intelligence Tools, 2002,11 (4) :531 - 552.
  • 8BABU B V, MATHEW M, JEHAN L. Differential evolution for multi-objective optimization[C]//IEEE Congres,s on Evolutionary Computation. Canberra, 2003: 2696 - 2703.
  • 9PARSOPOULOS K E, TASOULIS D K, PAVLIDIS N G, et al. Vector evaluated differential evolution for multiobjective optimization[C]//IEEE Congress on Evolutionary Computation. Portland, 2004: 204 - 211.
  • 10DEB K,PRATAP A, AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J ]. IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182 - 197.

共引文献111

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部