期刊文献+

LCD和SWT在滚动轴承故障诊断中的应用 被引量:6

THE APPLICATION OF LCD AND SWT IN FAULT DIAGNOSIS OF ROLLING BEARING
下载PDF
导出
摘要 针对强噪声背景下滚动轴承故障诊断中存在的非平稳非线性信号特征提取这一难题,提出一种基于局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)和同步压缩小波变换的方法(Synchrosqueezing Wavelet Transform, SWT),该方法首先对信号进行LCD分解,将其分解成多个內禀尺度函数(Intrinsic Scale Component,ISC),选取包含有效频率成分的ISC作为SWT的输入信号,使用SWT对其作进一步分析,从而提取有效频率特征。对强噪声背景下提取的滚动轴承外圈故障信号、内圈故障信号以及滚动体故障信号进行分析的结果表明,相比局部特征尺度分解、同步压缩小波变换等方法,该方法能够有效抑制噪声,从强噪声背景下提取出有效信号频率特征,从而能够有效判断滚动轴承的运转状况。同时该方法能够有效重构信号。 In order to overcome the difficulty of feature extraction of non-stationary faulty signals in rolling bearing fault diagnosis under strong noise background,a method based on local characteristic-scale decomposition and synchrosqueezing wavelet transform is proposed.Firstly,the measured vibration signals are processed with LCD and decomposes into a series of intrinsic scale component(ISC).Then a number of ISCs containing valid information components are selected for SWT and processing them by SWT so that we can extract the effective frequency characteristics.The analysis results from rolling bearing signals with out ring,inner ring and rolling body faults which in a strong noise background shows that comparing with LCD and SWT,the approach of synchrosqueezing wavelet transform based on LCD can effectively suppress the noise and extract the effective signal frequency characteristics.It also has a high time-frequency resolution for accurately determining the operation of rolling bearings.While the method can also effectively reconstruct the signal.
作者 刘义亚 李可 陈鹏 LIU YiYa;LI Ke;CHEN Peng(Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology,Jiangnan University,Wuxi 214122,China;School of Mechanical Engineering,Jiangnan University,Wuxi 214122,China;Mie University,Mie 514-8507,Japan)
出处 《机械强度》 CAS CSCD 北大核心 2019年第4期770-776,共7页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51775243) 江苏省重点研发计划-产业前瞻与共性关键技术项目(BE2017002) 江南大学自主科研计划重点项目(JUSRP51732B)资助~~
关键词 故障诊断 同步压缩小波变换 故障信号提取 局部特征尺度分解 Fault diagnosis Synchrosqueezing wavelet transform(SWT) Faulty signal extraction Local characteristic-scale decomposition(LCD)
  • 相关文献

参考文献5

二级参考文献43

  • 1桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,25(4):99-102. 被引量:59
  • 2樊长博,张来斌,殷树根,陈朝晖,王朝晖,崔厚玺.应用倒频谱分析法对风力发电机组齿轮箱故障诊断[J].科学技术与工程,2006,6(2):187-188. 被引量:20
  • 3余绍蓉,尹益辉,徐兵,张德美.基于信息熵理论的随机—模糊可靠性分析方法探讨[J].机械强度,2006,28(5):695-698. 被引量:15
  • 4耿俊豹,黄树红,陈非,刘伟.基于信息熵贴近度的旋转机械故障诊断[J].华中科技大学学报(自然科学版),2006,34(11):93-95. 被引量:18
  • 5Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 6Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.
  • 7Huang N E,Shen Z,Long R S.A new view ofnonlinear water waves-the Hilbert spectrum[J],Ann.Rev.Fluid Mech.,1999,31:417-457.
  • 8Khaldi K,Boudraa A O,Bouchikhi A,et al.Speechsignal noise vdmction by EMD[A].IEEEInternational Symposium on Communications,Controland SignalProcessing ISCCSP 2008,St.Julians,Malta,2008:1 155-1 158.
  • 9Dejie Yu,Junsheng Cheng,Yu Yang.Application ofEMD method and Hilbert spectrum to the faultdiagnosis of roller bearings[J].Mechanical Systemsand Signal Processing,2005,19:259-270.
  • 10Guanghong Gai.The processing of rotor startupsignals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.

共引文献201

同被引文献50

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部