摘要
多股螺旋弹簧(称为多股簧)是通过将多根弹簧线缠绕成多层电缆而形成的圆柱形螺旋弹簧。与单弹簧相比,多股簧在强度、寿命、减振性和耐冲击性方面具有出色的性能。但多股簧的推广应用一直受到试制周期长的制约。以试错法确定多股簧加工参数极其困难。为缩短多股簧的试制周期,提高多股簧加工的成品率及质量稳定性,文中提出了一套有限元仿真方案,解决了多股簧试制周期长、成本高的难题。该方案对有芯卷多股簧加工过程进行了高精度仿真,获得了大量的仿真数据。在给定成形尺寸的多股簧实际制造过程中,利用仿真实验数据且借助支持向量回归算法进行了多股簧加工参数优选,并利用优选得到的加工参数制造多股簧,最终得到了符合企业要求的多股簧。经企业验证及鉴定,加工的多股簧性能良好。
Stranded wire helical springs(SWHS) are cylindrical springs wound by stranded and multi-layered steel wires.Compared with ordinary helical springs, stranded wire helical springs have advantages of strength, fatigue life, damping, impact resistance, etc. However, the promotion of stranded wire helical spring application has been subject to a long trial period constraints. It is extremely difficult to determine the processing parameters of stranded wire helical spring by the trial and error method. In order to shorten the trial period of SWHS and improve the finished product rate and quality stability of SWHS, a set of finite element simulation experiment scheme is innovated, which solves the problem of long trial cost and high cost of SWHS trial. The scheme has carried out high precision simulation for the realization of the SWHS machining process with core coil, and a large number of simulation experimental data have been collected. Given the spring forming size and the actual manufacturing parameters and given dimensions of the helical spring forming process and in cooperation with enterprises, and actively make full use of the data of finite element simulation and the accumulation of the support vector machine learning regression algorithm of SWHS process parameter optimization is predicted. And the spring by using processing parameters to predict the optimized process, finally meet the business requirements of the helical spring. Through the verification and identification of the enterprise,the effect of SWHS is good.
出处
《机械设计》
CSCD
北大核心
2018年第S1期19-23,共5页
Journal of Machine Design
基金
国家自然科学基金资助项目(51375508)
关键词
多股簧
参数优选
仿真
支持向量回归
stranded wire helical spring(SWHS)
parameter optimization
simulation
SVR