摘要
电动轮驱动系统在简化车辆底盘结构,提高驱动效率的同时,增加了车辆非簧载质量,导致车辆行驶平顺性降低。传统悬架控制中常用的LQR最优控制算法受其权重系数的影响较为明显,其权重系数的选取方法主要是依靠经验设计,这不仅加大工作量,而且无法保证系统达到最优。文中提出一种针对外转子轮毂电机的电动轮减振系统设计方案,并基于粒子群优化算法对该减振系统进行参数匹配,使得该系统满足轮内被动减振的要求。然后,采用基于粒子群优化权重系数的LQR控制方法,设计LQR优化控制器对电动轮内减振系统和车辆悬架进行综合控制,进一步优化车辆平顺性和电动轮振动性能。最后,基于MATLAB/Simulink软件的仿真分析表明:所设计的轮内减振系统和车辆主悬架在基于粒子群的LQR控制下,能有效降低车身垂向加速度和电机冲击力,改善车辆和电动轮的垂向振动性能。
The electric-wheel drive system simplifies the chassis structure and improves the driving efficiency;in addition,it increases the vehicle’s non-sprung mass,thus resulting in the reduction of the vehicle’s ride comfort.The LQR optimal control algorithm which is commonly used in the traditional suspension control is significantly influenced by its weight coefficient.The weight selection of coefficient is mainly based on experience,which not only increases the workload,but also fails to ensure the optimal system.In this article,a vibration-damping system based on the electric wheel is proposed,and the particle-swarm optimization algorithm is applied to match the systematic parameters;as a result,the system meets the requirements of the inwheel passive vibration damping.Furthermore,with the aid of the LQR control based on the weight coefficient of the particleswarm optimization,the LQR optimization controller is worked out to control the in-wheel vibration-damping system and the vehicle’s main suspension,as well as further optimize the vehicle’s ride comfort and the electric wheel’s vibration performance.Finally,the simulation analysis based on the MATLAB/Simulink software shows that the in-wheel vibration-damping system and the vehicle’s main suspension,under the LQR control based on the particle-swarm optimization,can effectively reduce the vehicle’s vertical acceleration and the motor’s impact force on the one hand and improve the vertical vibration performance of the vehicle and the electric wheel on the other hand.
作者
黄菊花
杨俊
刘明春
曹铭
HUANG Ju-hua;YANG Jun;LIU Ming-chun;CAO Ming(School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031)
出处
《机械设计》
CSCD
北大核心
2019年第9期14-20,共7页
Journal of Machine Design
基金
国家自然科学基金资助项目(51605214)
关键词
电动轮
粒子群
LQR最优控制
电机冲击力
平顺性
electric wheel
particle swarm
LQR optimal control
motor’s impact force
ride comfort