期刊文献+

ON THE DIOPHANTINE EQUATION 6Y^2=X(X+1)(2X+1)

ON THE DIOPHANTINE EQUATION 6Y^2=X(X+1)(2X+1)
原文传递
导出
摘要 In 1875, E. Lucas asked if the Diophantine equation 6Y^2= X(X+1)(2X+1) (1) has only the nontrivial solution X= 24, Y=70. This was solved by Watson in 1918 by using elliptic functions, and its proof is complicated (Messenger of Math., 48(1918/19), 1—22).A new proof based upon arithmetical considerations has been given by Ljunggren. In 1952, he used the Pell equation in a quadratic field, and for the fundamental unit in a quartic field he investi-
作者 马德刚
出处 《Chinese Science Bulletin》 SCIE EI CAS 1985年第9期1266-,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部