期刊文献+

CONVERGENCE OF VECTOR-VALUED PRAMARTS INDEXED BY DIRECTED SETS

CONVERGENCE OF VECTOR-VALUED PRAMARTS INDEXED BY DIRECTED SETS
原文传递
导出
摘要 Let (Ω, Y, P) be a complete probability space and J a directed set filtering to the right and (Y_t, t∈J) be a stochastic basis. Let T denote the set of all simple stopping times with (Y_t, t∈J) and (E, ‖·‖) be a separable Banach space. The stochastic (essential) limit in the norm topology is denoted by slim (elim). An adapted Bochner integrable random family (x_t, Y_t, t∈J) is called a pramart
作者 汪振鹏
出处 《Chinese Science Bulletin》 SCIE EI CAS 1988年第4期347-,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部