摘要
A Banach space has uniformly normal structure if N(x)=sup(r_A(A), A(?)X, convex, diamA=1)<1, where r_A(A)=inf(sup (||x—y||l; y∈A)x∈A). It is known, from the papers in Proc. A. M. S., 1984, pp. 269-270 and in Pacif. J. M., 111(1984), 2: 357—369, that if X has uniformly normal structure, then X is reflexive.