期刊文献+

DOMAINS OF QUASIDISK TYPE IN THE PLANE AND THE LOGARITHMIC DERIVATIVE PROPERTY

DOMAINS OF QUASIDISK TYPE IN THE PLANE AND THE LOGARITHMIC DERIVATIVE PROPERTY
原文传递
导出
摘要 In the following, D will denote a finite connected domain in (?) of hyperbolic type; F(D) is the family of f which is analytic and f’≠0 in D; M is the family of M(?)bius transformations. If f∈F(D), we set Tf(z)=f'(z)/f’(z); ||Tf||D=sup[Tf(z)|ρD-1(z), where ρD(z) is the hyperbolic metric of D. Let σ(D)={a:z∈D f∈F(D) and ||Tf||D<a(?)f is univalent in D}; τ(D)={a:f∈F(D), φ∈M and ||Tf—Tφ||D<a(?)f is univalent in D}. Finally, D is said to be a domain
作者 谭海鸥
出处 《Chinese Science Bulletin》 SCIE EI CAS 1988年第10期872-,共1页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部