期刊文献+

基于POLACH方法的轮轨蠕滑曲线研究 被引量:6

Study on Wheel/rail Creep Curve Based on POLACH’s Method
原文传递
导出
摘要 蠕滑曲线对于描绘轮轨相互作用关系是十分重要的,影响车辆牵引/制动控制、运行平稳性和安全性。选用POLACH基于实测数据提出的接触方法,详细调查影响轮轨蠕滑曲线变化的因素,参变量涵括衰减因子、函数型摩擦因数、轮轨接触几何、轴重和车辆运行速度。研究发现衰减因子可表征轮轨接触界面粗糙度,用以描述蠕滑曲线初始斜率的衰减;函数型摩擦因数则可描述蠕滑曲线在大蠕滑区下降的趋势;轨距角与轨顶处的蠕滑曲线存在不可忽略的差异,这便于解释钢轨小半径曲线侧磨现象;在潮湿工况下,黏着系数随速度的提升而降低,但计算所得黏着系数高于文献报道的实测结果。为此,引入一种考虑运行速度和微滑速度的函数型摩擦因数,取得了与实测数据相吻合的结果。 The creep curve is very important for describing wheel-rail interaction and maintaining good vehicle traction/brake control performance. A detailed investigation is performed on the change of adhesion coefficient as a result of parametric variables such as attenuation factors, slip dependent friction coefficient, wheel/rail contact geometry, wheel load and vehicle running speed based on Polach’s method. The study finds that attenuation factor can represent roughness of wheel/rail interface and describe decay of initial slope of creep curve. Slip dependent friction can represent the decrease of creep curve in large creep zone. The creep curve at rail gauge corner is obviously different from that at rail top, easily explaining the phenomenon of rail side wear at small radius curves. Under wet condition, adhesion coefficient decrease with the increacement of speed. But the calculating adhesion is higher than that measured in field test according to literature. A slip and velocity dependent friction is introduced to obtain reasonable results.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第4期124-131,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51425804,51778542,51608459) 国家重点研发计划(2016YFC0802203-4) 西南交通大学博士研究生创新基金(D-CX201702)资助项目
关键词 蠕滑曲线 黏着系数 函数型摩擦因数 轮轨关系 creep curve adhesion coefficient slip dependent friction wheel/rail relationship
  • 相关文献

参考文献1

二级参考文献21

  • 1KALKER J.Three-dimensional elastic bodies in rolling contact[M].Dordrecht:Kluwer Academic Publishers,1990.
  • 2LI Z.Wheel-rail rolling contact and its application to wear simulation[D].Delft:Delft University of Technology,2002.
  • 3JENKINS H,STEPHENSON J,CLAYTON G,et al.The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J].Railway Engineering Journal,1974(1):2-16.
  • 4GRASSIE S L,GREGORY R W,HARRISON D,et al.The dynamic response of railway track to high frequency vertical excitation[J].Journal Mechanical Engineering Science,1982,24:77-90.
  • 5ANDERSSON C,DAHLBERG T.Wheel/rail impacts at railway turnout crossing[J].Journal of Rail and Rapid Transit.,1998,212:123-134.
  • 6RIPKE B,KNOTHE K.Simulation of high frequency vehicle-track interactions[J].Vehicle System Dynamics,1995,24:72-85.
  • 7ZHAI Wanming.Two simple fast integration methods for large-scale dynamic problems in engineering[J].International Journal for Numerical Methods in Engineering,1996,39:4199-4214.
  • 8LEONG J,MURRAY M,STEFFES D.Examination of railway track dynamic models capabilities against measured field data[C] //Proceedings of IHHA 2007,Kiruna,Sweden,June 11-13,2007:257-267.
  • 9CHAAR N,BERG M.Simulation of vehicle-track interaction with flexible wheelsets,moving track models and field tests[J].Vehicle System Dynamics,2006,44:921-931.
  • 10BAEZA L,FAYOS J,RODA A,et al.High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J].Vehicle System Dynamics,2008,46:647-662.

共引文献53

同被引文献53

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部