期刊文献+

基于多目标交叉熵优化的轮对轴承故障特征提取方法 被引量:14

Fault Feature Extraction of Wheel-bearing Based on Multi-objective Cross Entropy Optimization
原文传递
导出
摘要 从复杂干扰中提取轮对轴承的故障特征,需要同时从冲击性和循环平稳性两个方面考虑。而在提取过程中,单一的指标很难统一并平衡二者的权重。为此,提出一种基于多目标优化的非对称实Laplace小波解调方法。在第一个目标中,以最大化平方包络的峭度为适应度函数,利用窄带信号包络的时域稀疏性表征故障的冲击性特征。在第二个目标中,以最大化平方包络谱的峭度为适应度函数,利用窄带信号包络的频域稀疏性表征故障的循环平稳性特征。并通过将非支配排序和拥挤距离排序引入交叉熵算法实现了多目标最优非对称实Laplace小波解调以降低冲击性噪声或循环平稳性噪声的干扰。试验结果表明,该方法可实现复杂干扰下轮对轴承的故障特征提取,并通过与单目标优化方法的对比分析,验证了该方法的优越性。 It is crucial to take impulsiveness and cyclostationarity into account simultaneously in the fault features extraction of wheel-bearing, especially with the occurrence of complex interferences from wheel-rail contact relation. However, these two aspects can hardly be synthesized and balanced by one index. Therefore, a novel multi-objective optimized anti-symmetric real Laplace wavelet filtering method is proposed to deal with this problem. The first fitness function is designed by maximizing the kurtosis value of squared envelope, which is representing the impulsiveness. And, the second fitness function is designed by maximizing the kurtosis value of squared envelope spectrum, which is representing the cyclostationarity. Through combining the non-dominated sorting and crowded comparison, the parameters of the wavelet filter are optimized by the improved cross entropy algorithm, which is immune to impulsive or cyclostationary noises. One vibration signal from a faulty wheel-bearing is investigated to illustrate the effectiveness of the proposed method, and some comparisons with the single-objective method are also conducted to show its superiority in extracting the repetitive transients.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第4期285-292,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(U1534204,11472179,11572206,51405313,11372197,51375319) 河北省自然科学基金(A2016210099)资助项目
关键词 轮对轴承 故障特征提取 多目标优化 交叉熵 非对称实Laplace小波 wheel-bearing fault feature extraction multi-objective optimization cross entropy anti-symmetric real Laplace wavelet
  • 相关文献

参考文献4

二级参考文献48

  • 1梅宏斌,吴雅,杨叔子,崔乐芳,吴克勤.用包络分析法诊断滚动轴承故障[J].轴承,1993(8):38-40. 被引量:11
  • 2胡桥,何正嘉,訾艳阳,张周锁.基于模糊支持矢量数据描述的早期故障智能监测诊断[J].机械工程学报,2005,41(12):145-150. 被引量:13
  • 3梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J].机械工程学报,2006,42(10):151-155. 被引量:20
  • 4高立新,王大鹏,刘保华,丁庆新,丁芳,李民.轴承故障诊断中共振解调技术的应用研究[J].北京工业大学学报,2007,33(1):1-5. 被引量:25
  • 5NIKOLAOU N G,ATONIADIS I A.Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets[J].Mechanical Systems and Signal Processing,2002,16(4):677-694.
  • 6MALLAT S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 7LIN Jin,ZUO M J.Gearbox fault diagnosis using adaptive wavelet filter[J].Mechanical Systems and Signal Processing,2003,17(6):1 260-1 269.
  • 8杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002.
  • 9Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858.
  • 10Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999.

共引文献101

同被引文献122

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部