期刊文献+

变截面交叉簧片柔性铰链的力学建模与变形特性分析 被引量:6

Static Modelling and Analysis of Cross-spring Flexure Pivots with Variable Cross-section
原文传递
导出
摘要 交叉簧片柔性铰链是一种应用广泛的柔性转动关节。依靠簧片的分布式柔度可以产生较大的转动角度,但是与此同时铰链转动过程中的中心漂移大、抗干扰能力较差,这些都影响了铰链的传动精度和稳定性。通过采用非等直簧片构造的变截面交叉簧片柔性铰链可以使弹性元件的变形主要集中于铰链的交叉点附近,从而改变铰链的转动性能。基于Euler-Bernoulli梁理论建立了考虑几何非线性的变截面交叉簧片柔性铰链的末端载荷与铰链变形之间的关系。通过与有限元仿真进行对比,验证了文中建立的变形模型的准确性。利用柔性铰链的静态变形模型,分析了铰链的转动范围、转动刚度、中心漂移和抗干扰性能与簧片截面系数之间的关系。分析结果表明,对比传统交叉簧片柔性铰链,变截面交叉簧片柔性铰链具有更高的转动精度。 The cross-spring flexure pivot is a type of flexure joint which has been widely used in long stroke compliant mechanisms. Due to the distributed compliance, the flexure pivot can generate a large rotation angle, however, this structure also has some disadvantages, i.e., large center shift and low support stiffness. The concept of variable cross-section flexure pivot is proposed. The performance of the flexure pivot can be changed by applying non-prismatic spring leaves since they will concentrate the deformation of the leaves near the ration center of the flexure pivot. A static deformation model of the variable cross-section flexure pivot which considered the geometric nonlinearity of the spring leaves is proposed based on the Euler-Bernoulli beam theory. The model is verified by finite element simulations, the results obtained from those two methods agree with each other very well. Moreover, the relationship between the section factor of the spring leaves and the static deformation performances of the proposed flexure pivot, i.e., rotation range, rotation stiffness, center shift and anti-interference ability are discussed by using the deformation model. The results show that the flexure pivot with variable cross-section has higher rotational accuracy compared with the conventional one.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第13期73-78,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(51475113) 黑龙江省自然科学基金(E2015006)资助项目
关键词 柔性铰链 变截面簧片 几何非线性 转动特性 flexure pivot non-prismatic spring leaf geometric nonlinearity deflection characteristics
  • 相关文献

参考文献5

二级参考文献68

  • 1PAROS J M, WEISBORD L. How to design flexure hinges[J]. Machine Design, 1965, 37(27): 151-156.
  • 2HOWELL L L. Compliant mechanisms[M]. New York: Johm Wiley & Sons, Inc., 2001.
  • 3SMITH S T. Flexures- Elements of elastic mechanisms[M]. New York: Gordon and Breach Science Publishers, 2000.
  • 4AWTAR S, SLOCUM A H, SEVINCER E. Characteristics of beam-based flexure modules[J]. ASME Journal of Mechanical Design, 2007, 129(6): 625-639.
  • 5YOUNG W E. An investigation of the cross-spring pivot[J] Journal of Applied Mechanics, 1944, 11(2): 113-120.
  • 6HARINGX J A. The cross-spring pivot as a constructional element[J]. Applied Science Research, 1949, A1(4): 313-332.
  • 7WITTRICK W H. The properties of crossed flexure pivots and the influence of the point at which the strips cross[J]. The Aeronautical Quarterly, 1951, 11(1): 272-292.
  • 8HOWELLLL.柔顺机构学[M].余跃庆,译.北京:高等教育出版社,2007:194-195.
  • 9PAROS J M, WEISBORD L. How to design flexure hinges[J]. Machine Design, 1965, 37: 151-156.
  • 10SMITH S T. Flexure." elements of elastic mechanisms[M]. New York: Gordon and Breach Science Publisher, 2000.

共引文献19

同被引文献36

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部