摘要
为揭示基于内凹型接触轮的钢轨砂带打磨静态接触行为,分析内凹型接触轮与钢轨接触几何关系,建立内凹型接触轮与钢轨宏观静态接触理论模型。采用Hertz接触理论对钢轨横截面和纵截面两方向微元积分,得到接触区域边界曲线函数和应力分布函数,获得打磨压力、接触轮直径等参量对接触区域形态和应力分布的影响规律。理论计算和有限元仿真结果表明,内凹型接触轮与钢轨接触区域是由四条曲线围成的封闭图形,与传统椭圆形接触区域差异显著;最大接触应力随打磨压力的增大而增大,随接触轮直径的增大而减小;仿真数据和理论计算数据基本吻合,验证理论模型的正确性和有效性。
To reveal the static contact behavior for rail grinding by abrasive belt based on concave type contact wheel, the relationship of contact geometry between the concave type contact wheel and the rail surface is analyzed and then the macro static contact theory model is built. Through the integral method for the two directions of rail cross section and longitudinal section using Hertz contact theory, the boundary curve function and the stress distribution function of contact area are obtained, by which the influence of grinding pressure and diameter of contact wheel on contact area contour and stress distribution is gotten. Results by theoretical calculation and finite element simulation show that the contact area contour appears a closed graph surrounded by four curves, which is significantly different from the traditional elliptical contact; the maximum contact stress increases with the grinding pressure increasing, and decreases with the diameter of contact wheel increasing; the simulation data and the theoretical calculation data agree well, which verifies correctness and validity of the theory model.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2018年第14期152-158,共7页
Journal of Mechanical Engineering
基金
中央高校基本科研业务费(2017JBM043)
国家自然科学基金(51505025)资助项目
关键词
钢轨打磨
砂带
接触
仿真
应力
rail grinding
abrasive belt
contact
simulation
stress