期刊文献+

机车转子系统的非线性动力学分析 被引量:4

Nonlinear Vibration Analysis of Locomotive Rotor System
原文传递
导出
摘要 随着机车速度的提高,对其运行安全和稳定性提出更高要求。为研究机车轮对转子系统的动力学特性,在考虑弹性支撑、齿轮时变刚度等复合非线性因素影响下,基于哈密尔顿最小势能原理建立非线性连续-质量转子系统的动力学模型。在此基础上,对系统进行无量纲化,求解系统振形函数及固有振动频率。利用多尺度法求取非线性转子系统的渐进解,分析系统支撑刚度、阻尼及其齿轮时变刚度参数作用下,转子的主共振稳态幅频响应。研究表明:复杂边界条件下,齿轮的位置将直接影响模态幅值。轮轨激励的变化,对系统低频幅值影响较大、高频较小。轮轨激励达到临界值时,系统出现饱和共振,其后轮轨激励的变化,将不再影响系统的幅值。齿轮冲击刚度增加,转子系统位移显著增大。研究结果为机车轮对转子系统的动态特性分析和故障诊断奠定了一定的基础。 With the continuous improvement of locomotive speed, it has put out higher requirement of the stability and sperling of the locomotive system. In order to research the dynamical responses of rotor system with the locomotive wheel-set, the nonlinear continuous mass shaft dynamical model is established including the elastic-support and gear time-varying stiffness based on Hamilton principle of minimum potential energy. With the non-dimension of the dynamics differential equation, the vibration model functions and natural frequency are calculated. Then the asymptotic solution of the nonlinear rotor system is deduced by using multi-scale method, and the amplitude-frequency response of steady state main resonance with the effects of supporting stiffness, damping, gear time-varying stiffness are analyzed. The simulation results reveal that the location of gear directly affects the modal amplitudes under the complex boundary conditions. The varying of wheel-rail excitation has more influence on low frequency amplitude, but less influence on high frequency amplitude of the system. When the wheel-rail excitation arriving at the critical value, saturated resonance of the system happen, and then the varing of wheel-rail has no effect on the amplitude of system response. With the increase of gear shock stiffness, the vibration displacement of rotor system increases obviously. The research results lay a foundation for dynamical characteristics and fault diagnosis of the the nonlinear continuous mass shaft system of the locomotive wheel-set.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第18期97-104,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(11227201)
关键词 非线性 转子 时变刚度 渐进解 nonlinear systems rotor time-varying stiffness solution
  • 相关文献

参考文献2

二级参考文献27

  • 1颜海燕,唐进元,宋红光.直齿轮轮齿变形计算的数值积分法[J].机械传动,2005,29(2):7-9. 被引量:24
  • 2董海军,沈允文,郜志英,刘梦军.转速激励下齿轮系统拍击振动的分岔特性[J].机械工程学报,2006,42(2):168-172. 被引量:10
  • 3陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 4Umezawa K. Vibration of power transmission helical gears (Approximate equation of tooth stiffness) [J]. Bulletin of JSME, 1986, 29(251): 1605 -- 1611.
  • 5Cai Y. Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon (A new stiffness function of helical innvolute tooth pair) [J]. ASME Journal of Mechanical Design, 1995, 117(9): 460--468.
  • 6Kuang J H, Yang Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair [C]// Proceedings of the ASME Journal of 12th International Power Transmission and Gearing Conference. Scottsdale, Arizona, 1992, DE-43-1: 1--9.
  • 7Vaishya M, Houser R. Modeling and analysis of sliding friction in gear dynamics [C]// Proceedings of the 2000 ASME Design Engineering Technical Conferences,Bait/more, USA: DETC2000/ PTG-14430, 2000, 601-- 610.
  • 8Vaishya M, Houser R. Sliding friction induced non-linearity and parametric effects in gear dynamics [J]. Journal of Sound and Vibration, 2001,248(4): 671 -- 694.
  • 9Buckingham. Analytical mechanics of gear [M]. New York: Dover, 1949.
  • 10Chakraborti J, Hunashikatti H G. Determination of the combined mesh stiffness of a spur gear pair under load [C]//ASME paper 74-DET-39, 1974, 7p.

共引文献65

同被引文献31

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部