摘要
介绍一种多自由度,可以在空间内任意运动的三维软材料仿生驱动器。利用有限元分析软件对三维软体驱动器进行了设计优化,针对驱动器制作材料以及气腔截面形状、腔道壁厚进行了有限元仿真分析。通过软体驱动器结构仿真分析,结果表明半圆形腔道软体驱动器能提供更高的变形气压和刚度,而环形腔道则能给软体驱动器带来较低的变形气压和柔性。三维软体驱动器使用较高硬度材料、半圆形腔道能够在给定气压下获得更大的刚性及输出力;低硬度材料、较小壁厚的环形腔道能够在给定气压下获取更好的柔性和灵活性。根据仿真优化结论,制造出在低气压下灵活运动并具有一定载荷能力的软体驱动器模块。为测试软体驱动器模块的性能,设计一系列运动学以及力学试验,包括软体驱动器在气压下的弯曲试验、气压与软体驱动器输出力与刚度的测量试验。最后,通过试验展示了软体臂三维运动以及抓持不同物体的性能。
A multi-segment soft fluidic elastomer robot in three dimensions which is designed to be modular and can move around all the space is presented. The design of the pneumatically actuated silicone module, resembling soft tissue, with three pneumatic chambers is considered and optimized. The design optimization of the silicone module is based on finite element analysis(FEA). The materials used to make the module and design parameters such as the shape of the pneumatic channel cross-section, the ratio of channel length to module length, the distance of channel from the module wall and the ratio of the channel to module cross-section are analyzed. From the FEA analysis, the structure of the silicone module can be optimized: the research choose the pneumatic chambers of semicircular cross section, when need to gain higher pressure, else can choose the pneumatic chambers of ring cross-section indeed. According to the results of the simulative optimization, soft actuator that achieves great flexibility and ability to carry objects with low pressure is fabricated. Then, to get the idea how the multi-segment soft fluidic elastomer robot in three dimensions works, a series of kinematics experiments and mechanics experiments are set up, including the bending range test, the stiffness changing test and the generated force test. Last but not least, a bio-inspired soft arm is defined, which is connected by three single arm segments and can easily conduct the movement and grasping motion in three-dimensional space.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2018年第21期11-18,共8页
Journal of Mechanical Engineering
基金
国家自然科学基金资助项目(61633004,61403012)
关键词
模块化
软体驱动器
有限元分析
仿生
modular
soft actuator
finite element analysis
bio-inspired