期刊文献+

碳纤维增强树脂基复合材料切削机理研究 被引量:19

The Research of Machining Mechanism of Carbon Fiber Reinforced Plastic
原文传递
导出
摘要 碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic,CFRP)在细观尺度上由纤维、树脂及界面不同相组成,在宏观尺度上呈层叠特征,具有非均质性和各向异性。CFRP切削过程的实质是在切削力、热共同作用下同时去除高强度纤维和低强度树脂的复杂过程,极易出现加工损伤。抑制加工损伤的前提是准确揭示CFRP切削机理,而揭示其切削机理的关键是分析材料去除过程。由于纤维是复合材料内部承受主要载荷的组成相,材料的去除过程主要由纤维的断裂过程决定。因此,通过分析切削过程中纤维的受力状态,以双参数弹性地基梁理论为基础,建立了虑及纤维所受法向及切向约束,且兼虑树脂及界面温变特性的单纤维切削模型,可准确表征纤维实际受力状态,实现纤维断裂过程的准确求解。研究发现:切削深度和纤维角度影响纤维变形深度,即切深越大,纤维变形深度越大,更易产生加工损伤;随着纤维角度增加,纤维变形深度减小。同时,为解决单纤维切削模型难以直接验证的难题,利用其求解得到宏观切削力理论值,通过与试验值对比,间接验证了单纤维切削模型的正确性。同时与未考虑被切削纤维所受切向约束和树脂及界面温变特性时相比,同时考虑这两个因素可使CFRP宏观切削力计算精度平均提升20%。所建立的单纤维切削模型不仅能够从细观尺度准确揭示CFRP去除机理,而且可为后续有关损伤抑制的研究提供理论依据。 Carbon fiber reinforced plastic (CFRP) consists of fiber, matrix, and interface at micro level. Meanwhile, it has laminated feature and shows heterogeneous anisotropy at macro level. The essence of the CFRP removal in machining is the complex process including simultaneous failure of the high-strength fiber and low-strength matrix under cutting force and heat, which results in machining damage easily. Analyzing the material removal process deeply is the key to reveal the machining mechanism of the CFRP, which can help to control the machining damage. The material removal process is mainly determined by the facture process of the fiber due to the fact that the fiber bears main load during the CFRP machining. Therefore, a micro-mechanical model of cutting a single fiber is proposed by analyzing the stress state of the fiber based on the two-parameter elastic foundations to describe the fiber fracture process exactly. In order to represent the stress state of the single fiber accurately, the model is considered the normal and shear effect on the fiber deformation, and the property change of the epoxy as well as interface with respect to temperature. The machining mechanism of the CFRP is revealed as follows: the depth of fiber deformation is influenced by the cutting depth and the fiber orientation. The depth of fiber deformation is increased with the increase of the cutting depth, which will result in machining damage more easily. And the depth of fiber deformation decreases with the increase of the fiber orientation. In order to verify the proposed model, the micro-mechanical model of cutting a single fiber is acquired to calculate the macroscopic cutting force. Then the model is validated indirectly through the comparing of the calculated value of macroscopic cutting force with the experimental value. And the calculation accuracy of the cutting force increases 20% on average because of considering the shear effect and the property change of the epoxy as well as interface with respect to temperature. In addition, the model can reveal the machining mechanism of the CFRP at micro level more accurately and provide theoretical basis for subsequent studies of the damage suppression.
作者 贾振元 毕广健 王福吉 王小楠 张博宇 JIA Zhenyuan;BI Guangjian;WANG Fuji;WANG Xiaonan;ZHANG Boyu(Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education,Dalian University of Technology, Dalian 116024)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第23期199-208,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(51575082,U1508207,51621064) 国家重点基础研究发展计划(973计划,2014CB046503) 基本科研业务费(DUT16TD01)资助项目
关键词 碳纤维增强树脂基复合材料(CFRP) 切削机理 纤维变形 切削模型 损伤抑制 carbon fiber reinforced plastic(CFRP) machining mechanism fiber deformation micro-mechanical model damage suppression
  • 相关文献

参考文献1

二级参考文献35

  • 1陈绍杰.复合材料与B7E7"梦想"飞机[J].航空制造技术,2005,48(1):34-37. 被引量:21
  • 2张卫红,吴琼,高彤.周期性金属桁架夹芯板的力学性能研究进展[J].昆明理工大学学报(理工版),2005,30(6):24-28. 被引量:7
  • 3章继峰,张博明,杜善义.平板型复合材料格栅结构的增强改进与参数设计[J].复合材料学报,2006,23(3):153-157. 被引量:13
  • 4师昌绪.材料大词典[M].北京:化学工业出版社,1994..
  • 5EDAS Deutschland GmbH, Corporate Research Center. The research requirements of the transport sectors to facilitate an increased usage of composite materials I: The composite material research requirements of the aerospace industry [EB/OL]. [2006- 12- 27] http:// gcep. stanford, edu/pdfs/as-sessment s/adv_t ransportation_assessment, pdf.
  • 6Darrel T, Byron R P. Advanced composites development for aerospace applications [EB/OL]. [2006-12-27]. http://cite-seer. ist. psu. edu/cache/papers/cs/29702/ftp: zSzzSztechreports, larc. nasa. govzSzpubzSztlzSzmtgzS zNASA-2001 - 7sampe- drt. pdf/advanced - composites - developme nt- for. pdf.
  • 7Rehfield W R, Cheung R H. SOme basic strategies for aeroelastic tailoring o{ wings with bend-twist coupling [C] //44^th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference. Norfolk, Virginia: American Institute of Aeronautics and Astronautics, lnc, 2003 : 7-10.
  • 8National Aerospace Laboratory NLR. Aerospace structures and materials status report 2003 [EB/OL]. www. nrel. gov/ncpv/t hin_film/docs/world_pv_st at us_rpt_2003, pdf.
  • 9Robinson M J. A qualitative analysis of some of the issues affecting the cost of composites structures [C]// Proc. 23^th International SAMPE Technical Conf. Covina CA: Society for the Advancement of Material and Process Engineering, 1991: 445-458.
  • 10Steven H. Analysis and behavior of grid structures [D]. Stanford: Stanford University, 1995.

共引文献980

同被引文献197

引证文献19

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部