期刊文献+

基于双隐层量子线路循环单元神经网络的状态退化趋势预测 被引量:4

State Degradation Trend Prediction Based on Double Hidden Layer Quantum Circuit Recurrent Unit Neural Network
原文传递
导出
摘要 针对现有人工智能预测方法在旋转机械状态退化趋势预测中存在预测精度较差、计算效率较低等缺点,提出基于双隐层量子线路循环单元神经网络(Double hidden layer quantum circuit recurrent unit neural network,DHL-QCRUNN)的旋转机械状态退化趋势预测方法。首先采用量纲一化排列熵误差构建状态退化特征集,然后将该特征集输入DHL-QCRUNN以完成旋转机械状态退化趋势预测。在所提出的DHL-QCRUNN中,设计双隐层结构以提高网络的非线性映射能力;并引入量子相移门和多位受控非门以实现信息的传递;通过双隐层的量子反馈机制获得输入序列的整体记忆;最后采用输出层激发态的概率幅表示输出,通过以上方法改善了网络的非线性逼近能力和泛化性能,使所提出的旋转机械状态退化趋势预测方法具有较高的预测精度。此外,通过量子Levenberg-Marqudt(LM)算法更新DHL-QCRUNN的网络参数,提高该网络的收敛速度,使所提出的状态退化趋势预测方法具有较高计算效率。滚动轴承状态退化趋势预测实例验证了该方法的有效性。提出了基于DHL-QCRUNN的旋转机械状态退化趋势预测新方法,该方法具有较高的预测精度和较高的计算效率。 In view of the shortcomings such as poor prediction accuracy and lowcomputational efficiency of the existing prediction methodsbased on artificial intelligence in state degradation trend prediction of rotating machinery,a novel state degradation trend prediction method is proposed based on double hidden layer quantum circuit recurrent unit neural network(DHL-QCRUNN).In this method,a normalized permutation entropy error feature set is firstly constructed,and then this feature set is input into DHL-QCRUNN to accomplish state degradation trend prediction of rotating machinery.In the proposed DHL-QCRUNN,a double hidden layer structure is designed to raise the network nonlinear mapping ability;quantum phase-shift gates and multi-qubits controlled NOT gates are introduced to this network for information transfer;the overall memory of input sequences can be obtained by the quantum feedback mechanism in double hidden layers;moreover,the final output is described by the probability amplitudes of excited states in output layer.Therefore,the nonlinear approximation capability and generalization property of network are improved,and then the higher prediction accuracy of the proposed state degradation trend prediction method based on DHL-QCRUNN is obtainedforrotating machinery.Besides,the network parameters can be renewed by the quantum Levenberg-Marquardt(LM)algorithm to improve convergence speed of DHL-QCRUNN,accordingly,higher computational efficiency can be obtained forthe proposed trend prediction method.The example of state degradation trend prediction for rolling bearing demonstrates the effectiveness of the proposed method.A novel state degradation trend prediction method is proposed based on DHL-QCRUNN for rotating machinery,whichownshigher prediction accuracy and higher computational efficiency.
作者 李锋 向往 陈勇 汤宝平 王家序 LI Feng;XIANG Wang;CHEN Yong;TANG Baoping;WANG Jiaxu(School of Manufacturing Science and Engineering,Sichuan University,Chengdu 610065;The State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044;School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第6期83-92,共10页 Journal of Mechanical Engineering
基金 机械传动国家重点实验室开放基金(SKLMT-KFKT-201718) 中国博士后科学基金第60批面上(2016M602685) 四川大学泸州市人民政府战略合作(2018CDLZ-30)资助项目
关键词 双隐层量子线路循环单元神经网络 量子计算 排列熵误差 趋势预测 旋转机械 double hidden layer quantum circuit recurrent unit neural network quantum computation permutation entropy error trend prediction rotating machinery
  • 相关文献

参考文献2

二级参考文献20

  • 1漆为民,程远楚,姬巧玲,蔡维由.PID型Elman网络及在动态系统辨识中的应用研究[J].控制与决策,2005,20(10):1197-1200. 被引量:11
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 3SHAO Y,NEZU K. Prognosis of remaining bearing life using neural networks[J].Journal of Systems and Control Engineering,2000,(13):217-230.
  • 4GEBRAEEL N,LAWLEY M,LIU R. Residual life predictions from vibration-based degradation signals:A neral network approach[J].IEEE Tran on Induxttrial Electronics,2004,(03):694-700.
  • 5HUANG Runqing,XI Lifeng,LI Xinglin. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007.193-207.
  • 6PAN Yuna,CHEN Jin,LI Xinglin. Spectral entropy:A complementary index for rolling element bearing performance degradation assessment[J].Journal of Mechanical Engineering System,2009.1223-1231.
  • 7ZARETSKY E V,POPLAWSKI J V,PETERS S M. Comparision of life theories for rolling element bearing[J].Tribology Transactions,1996,(02):237-248.
  • 8LI Y,BILLIGTON S,ZHANG C. Adaptive prognostics for rolling element bearing condition[J].Mechanical Systems and Signal Processing,1999,(01):103-113.
  • 9VAPNIK V N. Statistical learning theory[M].New York:wiley,1998.
  • 10MIN Sunghwan,LEE Jumin,HAN Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction[J].Expert Systems with Applications,2006,(03):652-660.

共引文献152

同被引文献40

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部