期刊文献+

Current knowledge and future directions of TLR and NOD signaling in sepsis 被引量:2

Current knowledge and future directions of TLR and NOD signaling in sepsis
下载PDF
导出
摘要 The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor(TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors(PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogenassociated molecular patterns(PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials. The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor(TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors(PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogenassociated molecular patterns(PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials.
出处 《Journal of Medical Colleges of PLA(China)》 CAS 2014年第4期217-228,共12页 中国人民解放军军医大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (Grant 81420108022) Jiangsu Province Program of Innovative and Entrepreneurial Talents (2011 – 2014)
关键词 Innate immunity TLR signaling NOD signaling SEPSIS Innate immunity TLR signaling NOD signaling Sepsis
  • 相关文献

同被引文献16

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部