摘要
决策树是典型的归纳学习和数据挖掘方法,通过对数据库中获取的数据项属性值进行划分归类,最终形成类似于流程图的树型结构形式。ID3算法是决策树中的核心算法,针对ID3算法倾向于取值较多的属性的缺点,通过引入泰勒公式与麦克劳林公式,对传统算法进行降维,减小算法的计算复杂度,提高算法运行效率,使决策树的生成时间缩短,算法的效率得到了较大的提高。
Decision tree algorithm is a typical way of induction and data mining,which can be explained as a process to acquire data properties from database to classify and form a tree structure akin to the flow chart. ID3 is the core algorithm of decision tree which aims at the flaws of redundant values. This method in- troduces Taylor’s formula and Maclaurin’s formula to realize the dimension- reduction algorithm,lessen count-ing complexity,increase efficiency and shorten the generation of decision tree.
出处
《教育探究》
2013年第6期85-88,共4页
Educational Study
关键词
数据挖掘
决策树算法
ID3算法
data mining
decision tree algorithm
ID3 algorithm