期刊文献+

基于稀疏动态主元分析的故障检测方法

Fault Detection Based on Sparse Dynamic Principal Component Analysis
下载PDF
导出
摘要 文章将动态主元分析(Dynamic Principal Component Analysis,DPCA)和稀疏主元分析(Sparse Principal Component Analysis,SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测;所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测;此外,还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目;最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等3种方法相比较,表明所提方法可以获得更好的故障检测效果。 In this paper,a new sparse dynamic principal component analysis(SDPCA)technique is proposed,which combines two popular monitoring methods,dynamic principal component analysis(DPCA)and sparse principal component analysis(SPCA).The proposed SDPCA is used for fault detection for industrial process.In the proposed SDPCA method,the sparse loading vectors are derived by solving an optimization problem through the dynamic augmented matrix of process data.SDPCA technique not only considers the temporal correlation of process data,but also reduces redundancy of the process data,meantime reduces the computation load.Moreover,we will discuss a new forward selection algorithm for determining the number of non-zero loadings.The proposed SDPCA method is assessed through a numerical example and Tennessee Eastman benchmark process.Results show that the SDPCA based fault detection method could obtain a better performance compared with PCA,DPCA and SPCA based methods.
作者 段怡雍 吴平 高金凤 Duan Yiyong;Wu Ping;Gao Jinfeng(Faculty of Mechanical Engineering&Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《计算机测量与控制》 2019年第4期46-50,共5页 Computer Measurement &Control
基金 浙江理工大学科研启动基金(14022086-Y)
关键词 主元分析 动态主元分析 稀疏动态主元分析 非零负荷 故障检测 principal component analysis sparse principal component analysis dynamic principal component analysis non-zero loading fault detection
  • 相关文献

参考文献4

二级参考文献52

  • 1肖应旺,徐保国.改进PCA在发酵过程监测与故障诊断中的应用[J].控制与决策,2005,20(5):571-574. 被引量:17
  • 2薄翠梅,李俊,陆爱晶,等.基于核函数和概率神经网络的TE过程监控研究[C]//Proceedings of the 26^th Chinese Control Conference,Zhangjiajie,China,2007:511-515.
  • 3M.K. Hartnett, G. Lightbody, and G.W. Irwin, Identification of state models using principal components analysis [ J ]. Chemomet- rics and Intelligent Laboratory Systems, 1999,46 ( 1 ) : 181-196.
  • 4S. Yoon, and J. F. MacGregor, Principal-component analysis of multiscale data for process monitoring and fault diagnosis s [ J ]. Aiche Journal, 2004,50 ( 2 ) :2891-2903.
  • 5X.M. Tian, and X. G. Deng, A Fault Detection Method Using Multi-Scale Kernel Principal Component Analysis s [ J ]. Proceed- ings Of The 27TH Chinese Control Conference,2008,6 (3) :25-29.
  • 6S. Wold, K. Esbensen, P. Geladi. Principal component analysis [ J]. Chemometrics and Intelligent Laboratory Systems. 1987,2 (1- 3) :37-52.
  • 7B. Moore,Principal component analysis in linear systems:Control- lability, observability, and model reduction. Automatic Control s [ J ]. IEEE Transactions on 2002,26 ( 1 ) : 17-32.
  • 8Ku, W. F. , R. H. Storer and C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis [ J ]. Che- mometrics And Intelligent Laboratory Systems, 1995,30 ( 1 ) : 179- 196.
  • 9J. Mina, and C. Verde, Fault detection using dynamic principal component analysis by average estimation [ J ]. Nd International Conference On Electrical & Electronics Enginee:dng (ICEEE), 2005:374-377.
  • 10Q.H. He,X. Y. He,and J.X. Zhu,Fault detection of excavator's hydraulic system based on dynamic principal component analysis [ J ]. Journal Of Central South University Of Technology, 2008,15.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部