期刊文献+

基于越库配送车辆调度的混合量子遗传算法(QGA)研究 被引量:2

Research on Hybrid Quantum Genetic Algorithm Based on Vehicle Scheduling
下载PDF
导出
摘要 量子遗传算法(QGA)是将经典的量子理论应用到遗传算法当中,将量子态引入传统比特模型中,一种新型的求解最优问题的算法;越库配送车辆调度是一类经典的组合优化问题,基于量子遗传算法,针对提高物流配送过程中要求的快速和高效的问题,研究了一种混合量子遗传算法的框架,提出了解决传统物流调度中的配送优化方案的新思路,研究了新的量子更新和概率调整的策略,使该方法更加贴合物流配送的实际问题,实验结果显示,采用混合量子遗传算法后的性能明显优于传统的量子遗传算法,取得了更高的最佳适应度,具有良好的应用前景。 Quantum genetic algorithm is a new kind of algorithm to solve the optimization problem,which combine the classical quantum algorithm with the genetic algorithm and apply the quantum state to the Bit Model.Vehicle scheduling problem is a classic combinatorial optimization problem.This paper is mainly about a new Hybrid Quantum Genetic Algorithm framework to increase the speed and improve the efficiency of vehicle scheduling,which is more relevant to real problems.The result shows that the Hybrid Quantum Genetic Algorithm gets a higher fitness level than traditional way.It proves that the performance of improved method is better and has a good application prospect.
作者 杨玥 白士宇 殷雪峰 Yang Yue;Bai Shiyu;Yin Xuefeng(Liaoning Provincial Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for Grade CNC Machine,Shenyang Institute of Technology,Fushun 113122,China;College of Mechanical and Vehicle Engineering,Shenyang Institute of Technology,Fushun 113122,China)
出处 《计算机测量与控制》 2019年第4期208-212,共5页 Computer Measurement &Control
基金 沈阳工学院校级基金(i5201801)
关键词 车辆调度 组合优化 混合量子遗传算法 vehicle scheduling combinatorial optimization hybrid quantum genetic algorithm
  • 相关文献

参考文献10

二级参考文献83

  • 1陈华华,杜歆,顾伟康.基于遗传算法的静态环境全局路径规划[J].浙江大学学报(理学版),2005,32(1):49-53. 被引量:34
  • 2张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443. 被引量:120
  • 3肖健梅,黄有方,李军军,王锡淮.基于离散微粒群优化的物流配送车辆路径问题[J].系统工程,2005,23(4):97-100. 被引量:25
  • 4周兰凤,洪炳熔.用基于知识的遗传算法实现移动机器人路径规划[J].电子学报,2006,34(5):911-914. 被引量:27
  • 5G Dantzig,J Ramser.The truck dispatching problem[J].Management Science,1959,(6):80-91.
  • 6J Berger,M Salois,R Begin.A hybrid genetic algorithm for the vehicle routing problem with time windows[C].Advances in Artificial Intelligence,12th Biennial Conference of Canadian Society for Computational Studies of Intelligence,1998.114-127.
  • 7Z J Czech,P Czarnas.Parallel simulated for the vehicle routing problem with time windows[C].Proceedings 10th Euromicro Workshop on Parallel,Distributed and Network-based Processing,2002.376-383.
  • 8P Tian,J Ma,D M Zhang.Application of the simulated annealing algorithm to the combinatorial optimization problem with permutation property:An investigation of generation mechanism[J].European Journal of Operational Research,1999,118(1):81-94.
  • 9WU K H, CHEN C H, LEE J D. Genetic- based adaptive fuzzy controller for robot path planning[A]. Proceedings of the Fifth IEEE International Conference on Fuzzy Systems [C]. New Orleans :IEEE,1996. (3):1687-1692.
  • 10SADATI N, TAHERI J. Genetic algorithm in robot path planning problem in crisp and fuzzified environments[A].Procedings of IEEE International Conferenee on Industrial Technology [C]. Bangkok,Thailand:IEEE, 2002. (1):11-14.

共引文献357

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部