摘要
随着智能交通和物联网的发展,交通数据具有海量、多维、频繁更新等特征,传统数据库已无法满足查询效率需求。为提高查询效率,基于HBase提出一种支持高效更新和查询的交通数据索引框架。该框架采用三层索引结构,包括时间区间B+-树索引、子空间R-树索引、本地区域数据索引以支持数据更新,同时利用z-ordering技术进行数据分区以支持高效的多维查询。基于多样化数据集进行验证,实验证明所提方案在可拓展性和高效性方面均优于现有方案。
With the development of intelligent transportation and the Internet of Things, traffic data has the feature of massive, multi-dimensional and frequent updates, and traditional database has been unable to meet demand of query efficiency. To improve the query efficiency, we propose a traffic data indexing framework supporting efficient updating and querying based on HBase. The framework employs three-level index structure to update data quickly, which includes B+-tree Index for time intervals, R-tree index for subspaces, local index for data inside region. We also use the z-ordering technology which implements space partitioning to make the multi-dimension querying efficient. Based on the diverse data, we conduct our experiment and conclude that our scheme outperforms the existing scheme in terms of scalability and efficiency.
出处
《控制工程》
CSCD
北大核心
2016年第4期560-564,共5页
Control Engineering of China
基金
湖南省教育厅科学研究项目(13C260)
湖南省自然科学基金项目(10JJ9012)