期刊文献+

基于低秩字典学习的高光谱遥感图像去噪 被引量:6

Hyperspectral Image Denoising Based on Low Rank Dictionary Learning
下载PDF
导出
摘要 针对高光谱遥感图像(Hyperspectral Image,HSI)去噪问题,提出了基于非局部低秩字典学习的图像去噪算法。该算法利用高光谱遥感图像各波段之间的强相关性,结合图像非局部自相似性和局部稀疏性提高去噪性能。首先,结合各波段图像的强相关性、非局部自相似性和局部稀疏性建立非局部低秩字典学习模型,然后,利用迭代法求解该模型得到冗余字典和稀疏表示系数,最后,利用冗余字典和稀疏表示系数复原图像。相比较现有先进的算法,由于充分利用了高光谱图像各波段的强相关性这一内在特征,使得该算法能够很好地保持高光谱遥感图像的细节信息,达到了预期效果。 For the multi-spectral remote sensing image denoising problem, the image denoising algorithm based on nonlocal low rank dictionary learning is proposed. The basic idea of this algorithm is to improve the image denoising effect by simultaneously using high correlation between each band image, nonlocal similarity and local sparity. Firstly, the nonlocal low rank dictionary learning model is constructed by the high correlation between each band, nonlocal similarity and local sparity. Then this model is solved by the iterative method to obtain redundant dictionary and sparse represent coefficients. Finally, the denoising image can be restored by the redundant dictionary and sparse represent coefficients. Compared with state-of-the-art methods, the PSNR of the proposed algorithm is higher for taking advantage of the high correlation between each band image, while image detail information can be preserved to achieve the expected results.
出处 《控制工程》 CSCD 北大核心 2016年第6期823-827,共5页 Control Engineering of China
基金 河北省高等学校科学技术研究项目(QN20131136)
关键词 图像去噪 高光谱 遥感图像 低秩 字典学习 Image denoising hyperspectral remote sensing image low rank dictionary learning
  • 相关文献

参考文献1

二级参考文献135

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 1959, 148(3): 574-591.
  • 3Willshaw D J, Buneman O P, Longuet-Higgins H C. Non- holographic associative memory. Nature, 1969, 222(5197): 960-962.
  • 4Barlow H B. Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1972, 1(4): 371-394.
  • 5Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273.
  • 6Pham T T, Defigueiredo R J P. Maximum likelihood estima- tion of a class of non-Gaussian densities with application toLp deconvolution. IEEE Transaction on Acoustics, Speech, and Signal Process, 1989, 37(1): 73-82.
  • 7Jutten C, Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 9Chen S S, Donoho D L. Saunders M A. Atomic Decompo- sition by Basis Pursuit. Technical Report, Stanford Univer- sity, Britain, 1995.
  • 10Olshausen B A, Field D J. Emergency of simple-cell recep- tive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.

共引文献121

同被引文献46

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部