期刊文献+

基于自适应的ViBe运动目标检测方法 被引量:7

Moving Object Detection Methods Based on Adaptive ViBe
下载PDF
导出
摘要 针对视觉背景提取(VIsual Background Extractor,ViBe)运动目标检测算法参数固定且无法消除鬼影干扰的问题,提出了一种自适应策略的ViBe运动目标检测算法。在样本选取上,扩大样本邻域且随机生成样本,避免了邻域的重复选取导致的错误分类。对于ViBe匹配半径和背景更新因子的固定参数设置,自适应地根据背景的动态程度设置匹配半径和利用运动速度动态调整更新因子。为了消除鬼影,通过迭代法获得二次判别的最优阈值,过滤掉误判区域,可以快速将鬼影区域重新判别为背景。在2个公共视频数据集上,与具有代表性的6种算法进行比较,实验表明所提出方法的有效性,且对复杂场景下的运动目标检测具有鲁棒性。 In order to solve the problems of fixed parameter setting and ghost,an adaptive strategy for the ViBe(Visual Background Extractor)motion object detection algorithm is proposed,which includes three improved adaptive methods.First,for the sample selection,it expands the sample neighborhood with the uniform random number,which can avoid to select pixels repeatedly and reduce pixel error classification.Then for fixed match radius and background updator in ViBe,adaptive strategies are used respectively that matching radius are set by the degree of dynamic background and background updator is dynamically regulated by the motion velocity.Finally the optimal threshold of quadratic discriminant obtained by an iterative method is used to filter out the misjudgment area and eliminate the ghost areas.Compared with frame difference method,GMM(Gaussian Mixture Model),CodeBook,LSD(Low-rank and Sparse Decomposition),DECOLOR(Detecting Contiguous Outliers in the Low-rank Representation),and ViBe algorithm on the two public video datasets,Change Detection and LASIESTA,the proposed method has a better performance and it is robust for moving object detection in complex background.
作者 郭迎春 杨飞飞 师硕 GUO Ying-chun;YANG Fei-fei;SHI Shuo(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
出处 《控制工程》 CSCD 北大核心 2019年第9期1703-1711,共9页 Control Engineering of China
基金 国家自然科学基金(60302018) 天津市科技计划项目(14RCGFGX00846) 天津市科技计划项目(15ZCZDNC00130) 河北省自然科学基金面上项目(F2015202239)
关键词 ViBe算法 运动目标检测 自适应参数 鬼影抑制 ViBe algorithm moving object detection adaptive parameters ghost suppression
  • 相关文献

参考文献5

二级参考文献35

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2崔智高,李艾华,冯国彦.采用多组单应约束和马尔可夫随机场的运动目标检测算法[J].计算机辅助设计与图形学学报,2015,27(4):621-632. 被引量:6
  • 3马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20
  • 4Piccardi M. Background subtraction techniques: a review[C]//IEEE International Conference on Sys- tems, Man and Cybemeties, Sydney, Australia, 2004 :3099-3104.
  • 5Tsai D M, Lai S C. Independent component analy: sis-based background subtraction for indoor surveil- lanc([J].IEEE Transactions on Image Processing, 2009, 18(1) : 158-160.
  • 6Zhang Jie-yu, Barron J L. Optical flow at occlusion[C]//The Ninth Conference on Computer and Robot Vision, Toronto, Canada, 2012: 198-205.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]//IEEE Computer Vision and Pattern Recognition,Fort Col- lins, USA, 1999: 246-250.
  • 8Zhang J, Chen C H. Moving objects detection and segmentation in dynamic video backgrounds [C]// IEEE Conference on Technologies for Homeland Se-curity, Woburn, MA,2007:64-69.
  • 9Li Li, Xu Ji-ning. Moving human detection algo- rithm based on Gaussiarl mixture model[C]///Pro- ceedings of the 29th Chinese Control Conference, Beijing, 2010 : 2853-2856.
  • 10Xu L Q,Landabaso J L, Lei g. Segmentation and tracking of multiple moving objects for intelligent video analysis[J]. BT Technology Journal, 2004, 22(3) : 140-149.

共引文献110

同被引文献50

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部