期刊文献+

Man-machine verification of mouse trajectory based on the random forest model 被引量:1

基于随机森林模型的滑动轨迹人机识别(英文)
原文传递
导出
摘要 Identifying code has been widely used in man-machine verification to maintain network security.The challenge in engaging man-machine verification involves the correct classification of man and machine tracks.In this study,we propose a random forest(RF)model for man-machine verification based on the mouse movement trajectory dataset.We also compare the RF model with the baseline models(logistic regression and support vector machine)based on performance metrics such as precision,recall,false positive rates,false negative rates,F-measure,and weighted accuracy.The performance metrics of the RF model exceed those of the baseline models. 识别码在维护网络安全的人机身份验证中得到广泛应用。人机身份验证面临的挑战包括对人与机器滑动轨迹的正确检测。提出一种基于滑动轨迹数据集的人机识别随机森林模型。通过多维性能评价指标,包括识别准确率、识别召回率、识别误报率、识别漏报率、F值和加权准确率,验证该随机森林模型以及基准模型(逻辑回归模型和支持向量机)。随机森林模型多维性能评价指标优于基准模型。
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第7期925-930,共6页 信息与电子工程前沿(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.61673361 and 61422307)
关键词 Man-machine verification Random forest Support vector machine Logistic regression Performance metrics 人机识别 随机森林 支持向量机 逻辑回归 多维性能评价指标
  • 相关文献

参考文献1

二级参考文献5

共引文献6

同被引文献24

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部