期刊文献+

A saliency and Gaussian net model for retinal vessel segmentation 被引量:2

融合显著性模型和高斯网模型的视网膜血管分割方法(英文)
原文传递
导出
摘要 Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel segmentation.A saliency image is used as the input of the GNET model replacing the original image.The GNET model adopts a bilaterally symmetrical structure.In the left structure,the first layer is upsampling and the other layers are max-pooling.In the right structure,the final layer is max-pooling and the other layers are upsampling.The proposed approach is evaluated using the DRIVE database.Experimental results indicate that the GNET model can obtain more precise features and subtle details than the UNET models.The proposed algorithm performs well in extracting vessel networks,and is more accurate than other deep learning methods.Retinal vessel segmentation can help extract vessel change characteristics and provide a basis for screening the cerebrovascular diseases. 视网膜血管分割是眼底图像分析的一个重要问题。本文提出一种融合显著性模型和高斯网(GNET)模型的新型深度学习结构分割视网膜血管。显著性图像替代原始图像作为GNET模型的输入。GNET模型具有双边对称结构。左边结构中,在第一层进行上采样操作,在其他层进行最大池化操作;右边结构中,在第一层进行最大池化操作,在其他层进行上采样操作。利用DRIVE数据库对所提方法进行评估。实验结果表明,与UNET模型相比,GNET模型能获得更精确的特征和更精细的细节。本文所提算法能提取准确的血管网络,与其他深度学习方法相比具有更高精确度。视网膜血管分割有助于提取血管变化特征,为脑血管疾病筛查提供依据。
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1075-1087,共13页 信息与电子工程前沿(英文版)
基金 Project supported by the Natural Science Foundation of Fujian Province,China(No.2016J0129) the Educational Commission of Fujian Province of China(No.JAT170180)
关键词 Retinal vessel segmentation Saliency model Gaussian net(GNET) Feature learning 视网膜血管分割 显著性模型 高斯网模型(GNET) 特征学习
  • 相关文献

参考文献3

二级参考文献97

  • 1Martinez-Perez M E, Hughes A D, Thom S A, Bharath A A, Parker K H. Segmentation of blood vessels from red-free and fluoresce in retinal images. Medical Image Analysis, 2007, 11(1): 47-61.
  • 2Ramlugun G S, Nagarajan V K, Chakraborty C. Small retinal vessels extraction towards proliferative diabetic retinopathy screening. Expert Systems with Applications, 2012, 39(1): 1141-1146.
  • 3Fraz M M, Barman S A, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka A R, Owen C G. An approach to localize the retinal blood vessels using bit planes and centerline detection. Computer Methods and Programs in Biomedicine, 2012, 108(2): 600-616.
  • 4Soares J V B, Leandro J J G, Cesar R M, Jelinek H F, Cree M J. Retinal vessel segmentation using 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25(9): 1214-1222.
  • 5Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365.
  • 6Marín D, Aquino A, Gegúndez-Arias M E, Bravo J M. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on Medical Imaging, 2011, 30(1): 146-158.
  • 7Fraz M M, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka A R, Owen C G, Barman S A. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548.
  • 8Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 1989, 8(3): 263-269.
  • 9Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 2000, 19(3): 203-210.
  • 10Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine, 2010, 40(4): 438-445.

共引文献74

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部