摘要
在以前的论文中,我们从计算机模拟实验及相关的光学现象出发提出了Fabry—Perot(以下简称F—P)干涉光谱技术中的积分方程 数值求解的稳定条件。本文将进一步从数学上利用积分方程的本征值理论阐明这些稳定条件产生的原因,从而为F—P干涉光谱技术奠定坚实的基础。
In previous paper1-3, from the results of the electronic computer simulation experiments and the analysis of the corresponding optical properties, we presented a stabilization condition for numerically solving a Fredholm Integral equation of the first kindσ2σ1k(x, σ)B(σ)dσ =I (x) in Fabry-Perot interferencespectroscopy. In this paper, the author will demostrate why the condition makes the linear simultaneous equations stable using the eigenvalue theory of the integral equations. This work may lay the foundation of Fabry-Perot interference spectroscopy.
出处
《光子学报》
EI
CAS
CSCD
1992年第3期198-205,共8页
Acta Photonica Sinica
基金
国家自然科学基金
关键词
积分方程
本征值
稳定性
光谱学
Integral equation
Eigenvalue theory
F-P interferometer!
Interference spectroscopy.