期刊文献+

基于RBF网络的有源噪声控制 被引量:1

A Study of Active Noise Control Based on RBF Neural Net works
下载PDF
导出
摘要 提出一种神经自适应噪声有源控制 (ANC)的方法。应用RBF(RadialBasisFunction)网络对噪声进行有源控制。针对RBF的网络特点 ,使用递阶遗传算法确定网络参数 (连接权、隐节点中心和宽度 ) ,同时解决了网络拓扑结构的优化训练。 In this paper, a method of neuro-adaptive active nois e control (ANC) system is presented. The RBF(Radial Basis Function)is consider ed both in the modeling and control context. A hierarchical genetic algorithm fo r RBF neural networks is used to determine network parameters such as centers, w idths and connection weights. The configuration of RBF network is also establis hed at the same time during training. A feed-forward ANC system is used to can cel broadband air-condition noise in a three-dimensional propagation medium. T he developed neuro-adaptive ANC algorithm is implemented within a free-field e nvironment, and simulation results to verify its performance are presented and d iscussed.
作者 张菊香 邱阳
出处 《应用力学学报》 CAS CSCD 北大核心 2003年第1期24-26,共3页 Chinese Journal of Applied Mechanics
关键词 空调噪声 RBF网络 递阶遗传算法 有源噪声控制 air-condition noise, RBF neural networks, hierarchical genetic algorithm, active noise control.
  • 相关文献

参考文献4

  • 1[1]R.R. Leitch , M.O. Tokhi, Active noise control system, IEE Proceeding-A, 1987,134 (6):525~546
  • 2[2]M.O. Tokhi, R., Wood, Active control of noise using neural networks, Proceedings of the Institute of Acoustics, 1995,17 (Part 4):209~216
  • 3[3]M.O Tokhi, R., Wood, Active noise control using multi-layered perceptron neural networks, Journal of Low Frequency Noise, Vibration and Active Control,1997,16 (2):109~142
  • 4[4]B.A.Whitehead, T.D.Choate, Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction, IEEE Trans. Neural Networks, 1996, 7(4):869~880

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部