摘要
利用两相材料中集中力的基本解 ,建立了求解曲线型刚性线夹杂和两相材料界面相交问题的弱奇异积分方程。通过Cauchy型奇异积分方程主部分析方法 ,得出穿过两相材料界面的曲线型刚性线在交点处的奇性应力指数及交点处角形域内的奇性应力 ,并利用奇性应力定义了交点处的应力奇异因子。通过对弱奇异积分方程的数值求解 。
By using the elementary solutions of antiplane point f or ce applied at the bonded half two planes, the weakly singular integral equations used to solve the problem of the curved rigid line crossing the interface of th e bi-material are obtained. The singular stress order at the intersection and t he singular stress of the angular regions near the intersection are obtained thr ough the principal part analysis method of Cauchy type integral. In terms of the singular stress, the singular stress coefficient at the intersection is defined . After the numerical solution of the weakly singular integral equations, the si ngular stress coefficient at the end points and intersection of the rigid line a re obtainable.
出处
《应用力学学报》
CAS
CSCD
北大核心
2003年第1期136-139,共4页
Chinese Journal of Applied Mechanics
基金
中国博士后基金资助项目 (No .2 0 0 152 9)
关键词
反平面
刚性线夹杂
界面
积分方程
antiplane, rigid line inclusion, interface, integral e quations.