期刊文献+

非紧广义拟变分不等式解的存在性

Existence of solutions of non-compact generalized quasi-variational inequalities
下载PDF
导出
摘要 获得了在局部凸拓扑向量空间中非紧广义拟变分不等式解的存在性定理,这些结果改进和推广了Tan和Yuan、Kim、Tian和Zhou等人的若干结果. *' A new approach to prove several existence theorems of solutions for noncompact generalized quasivariational inequalities in both locally convex spaces and finite dimensional spaces is obtained. These results generalize or improve the results of Tan and Yuan, Kim, Tian and Zhou.
作者 曹金文
出处 《吉林化工学院学报》 CAS 2003年第1期87-90,共4页 Journal of Jilin Institute of Chemical Technology
关键词 上半连续(下半连续) 广义拟变分不等式(GQVI) 性质K L-优化 upper (lower) semi-continuous generalized quasi-variational inequality(GQVI) the property K L-majorized
  • 相关文献

参考文献9

  • 1[1]M.H.Shih and K.K.Tan. Generalized quasi-variational inequalities in locally convex topological vector spaces[J].Math.Anal.Appl,1985,108:333-343.
  • 2[2]K.K.Tan and X.Z.Yuan. Lower semicontinuity of multivalued mapping and equilibrium points[M]. Proceedings of the First World Congress of Nonlinear Analysis 1998 Florida. U.S.A.(in press):(1999). Walter de Gruyter Publishers,1999.
  • 3[3]K.K.Tan and X.Z.Yuan. Equilibria of generalized games[J]. Nonlinear Time and Digest 1,2000:61-70.
  • 4[4]H.Kneser.Sur un theoreme fondamental de la theorie des jeux[J].c.r.acad.sci.paris 234.2418-2420.
  • 5[5]J.P.Aubin. Mathematical methods of game and economic[M]. North-Holland.2001.
  • 6[6]J.P. Aubin. and I. Ekeland applied nonlinear analysis[M].John Wiley & Sons.2001.
  • 7[7]W.K.Kim.Remarks on a generalized quasi-variational inequality[J].Proc.Amer.Math.Soc.2002,103:667-668.
  • 8[8]E.Tarafdar. On nonlinear variational inequalities[J].Proc.Amer.Math.Soc.2001,67:95-98.
  • 9[9]G.Tian and J.Zhou. Quasi-variational inequalities with non-compact sets[J].J. Math.Anal.Appl 2001,160:583-595.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部