期刊文献+

智能像卡门禁系统映象机制 被引量:4

Study about Mapping Mechanism of Entrance Guard System Using Smart Image Card
下载PDF
导出
摘要 SIC卡是一种新型的特征信息载体,文章讨论SIC卡用于智能门禁系统的映象机制。主机是MCS-51单片机系统,结合单片机体系与门禁用SIC卡两者的特点,选用X-Y分区跳沿投影作为特征基元,每个基元包含若干子基元;动态数组作为样本库;基元统计进行粗分类,子基元统计进行细辨析。映象精确度达到实用要求。该文涉及抗畸变的模式精确识别理念,即取样精确、结果精确。文章提出的映象机制也可借鉴于其它类型主机的智能门禁系统。 Smart Image Card(SIC)is a new kind of feature information carrier.This paper discusses the mapping mecha-nism in which SIC card is used in the intelligent entrance guard system.The host computer is the MCS-51,Combining the characters of MCS-51and SIC card used in entrance guard system,the system divides the X-Y into blocks and makes the blocks projections,which reflects the change of0and1,as basic units.Each unit involves some subunits.And the dynamic array is chose as the sample set.Units are classified roughly and subunits are discriminated carefully.The mapping precision accords with the requirement of practicality.The anti-deformation theory of precise pattern recogni-tion,which means the result is precise if sample set is precisely chose,is included in this paper.The mapping mecha-nism is also applied to the other intelligent entrance guard systems based on mainframe.
作者 戴永
出处 《计算机工程与应用》 CSCD 北大核心 2003年第8期74-77,共4页 Computer Engineering and Applications
基金 湖南省科技厅项目(编号:(2001)228)
关键词 智能像卡 门禁 映象机制 模式识别 Smart Image Card(SIC),Entrance guard,Mapping mechanism,Pattern recognition
  • 相关文献

参考文献2

二级参考文献2

共引文献5

同被引文献14

  • 1蒲东兵,杜常瑞,明媚,于哲舟.基于DSP的人像识别门禁系统设计与实现[J].仪器仪表学报,2005,26(z2):397-399. 被引量:6
  • 2宁方华,张彦伟,俞武嘉.基于随机哈希锁的射频识别门禁系统安全方案[J].吉林大学学报(工学版),2012,42(S1):317-321. 被引量:2
  • 3杨虎猛.Lonworks技术及在一卡通门禁系统中的应用[J].计算机应用与软件,2005,22(3):134-136. 被引量:2
  • 4唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 5李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 6Knerr S,Personnaz L,Dreyfus G.Single-layer learning revisited:A stepwise procedure for building and training a neural network[C]//J Fogelman ed.Neurocomputing:Algorithms,Architectures and Applications.New York:Springer-Verlag,1990.
  • 7Bottou L,Cortes C,Denker J,et al.Comparison of classifier methods:a case study in handwritten digit recognition[C]//Proc of the International Conference on Patten Recognition,1994:77-87.
  • 8Platt J,Cristianini,Shawe-Taylor.Large margin DAGS for multiclass classification[C]//Advances in Neural Information Processing systems,2000:547-553.
  • 9Platt J.Fast training of support vector machines using sequential minimal optimization[M]//Advances in Kernel Methods -Support Vector Learning.Cambridge,MA:MIT Press,1999:185-208.
  • 10Osuna E,Freund R,Girosi F.Improved training algorithm for support vector machines[C]//7th IEEE workshop on Neural Networks for Signal Processing,NNSP 97.IEEE,1997:276-285.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部