期刊文献+

基于混合神经网络的风机性能监测模型 被引量:1

Monitoring model of fan performance based on hybrid neural network
下载PDF
导出
摘要 针对传统的RBF神经网络泛化能力差的缺点,利用RBF神经网络强大的非线性逼近能力和数学模型良好的外推能力,提出了一种将传统的RBF神经网络和用偏最小二乘法建立的通风机性能数学模型相结合的混合神经网络模型,并将该模型用于通风机的重要性能参数——流量的监测上。以实验室4-73No.8D离心风机为研究对象,用不同导流器开度下的实验数据进行拟合,研究结果表明,混合神经网络模型的泛化能力强,精度高,各项模型评价参数均优于传统的RBF神经网络模型。 Due to the limitation of RBF neural network's generalization ability, an improved fan performance model in the flux monitoring is proposed based on hybrid neural network. It makes use of the strong nonlinear approaching of RBF neural network and partial least squares (PLS) model. Performance curves of 4-73No. 8D were approached with experimental data of different opening angles of guider. The results show that the hybrid neural network model has better generalization ability and higher precision, and it is superior to normal RBF neural network model.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2003年第2期61-63,共3页 Journal of North China Electric Power University:Natural Science Edition
关键词 离心风机 RBF神经网络 数学模型 混合模型 性能监测 曲线拟合 centrifugal fan RBF neural network mathematic model hybrid neural network model performance monitoring curve fitting
  • 相关文献

参考文献2

二级参考文献7

  • 1[1]Schreck S, Faller W and Luttges M M. Neural network prediction of three-dimensional unsteady separated flowfields[J]. Journal of Aircraft,1995, 32(1): 1212~1219.
  • 2[2]Prasanth R K and Whitaker K W. Neuromorphic approach to inverse problems in aerodynamics [J]. AIAA Journal, 1995, 33(6):1150~1152.
  • 3[3]Kodiyalam S and Gurumoorthy R. Neural networks approximator with novel learning scheme for design optimization with variable complexity data[J]. AIAA Journal, 1997, 33(6): 736~739.
  • 4[4]Whitaker K W. Specifying exhaust nozzle contours with a neural network[J]. AIAA Journal, 1993, 31(2): 273~277.
  • 5[6]РисВ Х.离心式压缩机械[M].北京:机械工业出版社,1965.
  • 6郭满华,1997年
  • 7刘竹溪,泵站水锤及其防护,1988年

共引文献28

同被引文献7

  • 1HE Chun-yu,SUN De-min,XUE Mei-sheng,et al.The advanced control and optimization in tobacco strips processing Intelligent Control and Automation[].Proceedings of therd World Congress on.2000
  • 2S Reynold Chu,Rahmat Shoureshi,Manoel Tenorio.Neural networks for system identification[].IEEE Control Systems Magazine.1990
  • 3Gomm,J.B.,Yu,D.L.Selecting radial basis function network centers with recursive orthogonal least squares training[].IEEE Trans Neural Netw.2000
  • 4SUTANTO E L.Mean-tracking clustering algorithm for radial basis function centre selection[].International Journal of Control.1997
  • 5Moody J E,Darken C.Fast learning in networks of locally tuned processing units[].Neural Computation.1989
  • 6Chen S,Billings S A.Neural networks for nonlinear dynamic system modeling and identification[].International Journal of Control.1992
  • 7石海健,魏衡华,薛美盛,孙德敏.烟叶制丝过程先进控制站的设计与开发[J].自动化与仪表,2001,16(5):28-31. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部