期刊文献+

与二阶多项式等谱问题相联系方程的Painlevé分析 被引量:1

Painlevé analysis of the equation related to the polynomial isospectrum problem
下载PDF
导出
摘要 对于与二阶多项式等谱问题相联系的方程簇的Painlevé分析,文章利用Weiss、Tabor及Carnevale(简称WTC)等人的方法对方程进行Painlevé分析。当m=2、n=1时,详细给出了方程组的Painlevé分析,阐明了该方程组具有Painlevé性质,并对此Laurent级数截尾展开得到约化的Burgers方程的Ba··cklund变换,给出了可积方程具有Painlevé性质的一个例证。 The Painlevé analysis of partial differential equations is made with the methods developed by Weiss, Tabor and Carnevale(WTC) so as to provide a unified approach to the integrable equation hierarchy. As m=2,n=1, a detailed study of the equations is made, and it is shown that the equations possess the Painlevé property. Furthermore, by the truncated Laurent expansion, the Ba··cklund transformation for the Burgers equations is found. An example of integrable differential equations with Painlevé property is given.
作者 杨志林
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第2期272-276,共5页 Journal of Hefei University of Technology:Natural Science
关键词 二阶多项式等谱问题 PAINLEVE分析 BAECKLUND变换 共振点 偏微分方程 BURGERS方程 Painlevé analysis Ba··cklund transformation resonance
  • 相关文献

参考文献1

  • 1M. J. Ablowitz,A. Ramani,H. Segur. Nonlinear evolution equations and ordinary differential equations of painlevè type[J] 1978,Lettere al Nuovo Cimento(9):333~338

同被引文献7

  • 1Weiss J Tabor M Carnevale G.The Painlevé property for partial differential equations[J].J Math Phys,1983,24(3):522-522.
  • 2Newell A C Tabor M Zeng Y B.A unified approach to Painlevé expansions[J].Physica,1987,29:1-68.
  • 3Zeng Y B, Li Y S. Integerable Hamiltonian system relatad to polynomial eigenvalue problem[J]. J Math Phys, 1990,34(3):651-655.
  • 4Newell A C, Tabor M, Zeng Y B. A unified approach to Painlevé expansions[J]. Physica,1987,29D:1-68.
  • 5Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations[J]. J Math Phys,1983,24(3):522.
  • 6Steeb W H, Louw J A, Strampp W. Lax formulation, Painlevé property and recursion operator for a space-dependent Burgers'equation[J]. Prog Theor Phys, 1986,75:455.
  • 7Weiss J. The Painlevé property for partial differential equations B a^.. cklund transformation , Lax pairs, and the Schwarzian derivative[J].J Math Phys,1983,24(6):1405.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部