摘要
对于与二阶多项式等谱问题相联系的方程簇的Painlevé分析,文章利用Weiss、Tabor及Carnevale(简称WTC)等人的方法对方程进行Painlevé分析。当m=2、n=1时,详细给出了方程组的Painlevé分析,阐明了该方程组具有Painlevé性质,并对此Laurent级数截尾展开得到约化的Burgers方程的Ba··cklund变换,给出了可积方程具有Painlevé性质的一个例证。
The Painlevé analysis of partial differential equations is made with the methods developed by Weiss, Tabor and Carnevale(WTC) so as to provide a unified approach to the integrable equation hierarchy. As m=2,n=1, a detailed study of the equations is made, and it is shown that the equations possess the Painlevé property. Furthermore, by the truncated Laurent expansion, the Ba··cklund transformation for the Burgers equations is found. An example of integrable differential equations with Painlevé property is given.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
2003年第2期272-276,共5页
Journal of Hefei University of Technology:Natural Science