期刊文献+

海洋底边界层中实测海流的垂直分布 Ⅱ.潮流边界层 被引量:2

THE VERTICAL DISTRIBUTIONS OF OCEAN CURRENTS IN THE BOTTOM BOUNDARY LAYER OF SHELF SEA Ⅱ.THE BOTTOM BOUNDARY LAYER OF TIDAL CURRENTS
下载PDF
导出
摘要 为了满足海洋工程设计的需要 ,作者从理论上研究了海底以上 1— 2m处潮流边界层的结构。把传统上用于稳定海流的底Ekman层理论发展成为用于潮流运动的振荡Ekman边界层 ,给出了潮流Ekman方程的解析解 [式 ( 32 )— ( 35 ) ],提出了对数边界层中潮流运动的方程组 (式 4— 8)及其约束条件 (式 48) ,并给出了潮流Ekman层与潮流对数边界层的匹配条件 (式 43) ,还给出了计算浅海潮流垂直分布的解析表达式 ( 36)— ( 39)。 The observed ocean currents are generally decomposed into two components:residual and tidal currents. In the previous paper (Part I) we discussed the vertical distribution of residual currents with the help of the stationary boundary layer theory. Since the stationary theory cannot be applied to tidal currents due to their oscillatory properties, in this paper we consider both the tidal Ekman layer and logarithmic layer to be an oscillatory boundary layer. The momentum equation of the tidal Ekman layer can be written as i(σ+f) += d d ζ 2K V d + d ζ 2(1) -i(σ-f) -= d d ζ 2K V d - d ζ 2 where the quantity + respresents a velocity vector of constant magonitude whose direction rotates anticlockwise with frequency σ ,when viewed from above; the quantity - likewise represents a velocity with a constant magnitude which rotates clokwise with frequency σ ; f is the Coriolis parameter, K V , the eddy viscosity cofficient; ζ 2 the vertical coordinate in the Ekman layer. Apparently, the equation set (1) can be solved analytically as given in the text. The tidal logarithmic layer equation results in the following equation:  d η d t=^z 0κ 2u 0 e η(η-1)+1+η(- e -η +η+1)u 0[ e η(η-1)+1] d u 0 d t+f^z 0κη 2( e η-η-1)v 0 e η(η-1)+1V 0u 2 0(2) where κ is von Karman's constant equal to 0.4; ^z 0 is the seabed roughness length; ( u 0,v 0 )is the velocity at the top of logarithmic layer, η= ^u 0κ/ ^u * ,u * is the friction velocity.Obviously, equation (2) should be sloved numerically.
出处 《海洋与湖沼》 CAS CSCD 北大核心 2003年第2期187-193,共7页 Oceanologia Et Limnologia Sinica
基金 "九五"中国科学院资源与环境研究重大资助项目 KZ95 1 A1 40 5号 中国科学院百人计划资助项目 L1 80 1 0 1 1 0号
关键词 潮流 边界层 垂直分布 Tidal currents, Boundary layer, Vertical distributions
  • 相关文献

同被引文献31

  • 1赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟[J].海洋学报,1994,16(5):1-10. 被引量:121
  • 2卢金友,徐海涛,姚仕明.天然河道水流紊动特性分析[J].水利学报,2005,36(9):1029-1034. 被引量:27
  • 3郭炳火.潮流绕半岛诱导上升流的解析模式[J].海洋学报,1986,8(3):272-282.
  • 4OGURA S. The tides in the sea adjacent to Japan[R]. Hydrogr.Bull.Dep.Imp.Jpn.Navy, 1933, 7: 1-189.
  • 5NISHIDA H. Improved tidal charts for the western part of the north Pacific Ocean[R]. Report of Hydrographic Researches, 1980, 15: 55-70.
  • 6LARSEN L H, CANNON G A, CHOI B H. East China Sea tide currents[J] .Cont. Shelf Res,, 1985,4(1-2):77-103.
  • 7FANG. G. Tide and tidal current charts for the marginal seas adjacent to China[J]. C. J. of Oceanology and Limnology, I986, 4(1): 1-16.
  • 8YANAGI T, MORIMOTO A, ICHIKAWA K. Co-tidal and co-range charts for the East China Sea and the Yellow Sea derived from satellite altimetric data[J]. Journal of Oceanography, 1997, 53: 303-309.
  • 9CHOI B H. A three-dimensional model of the East China Sea[M]. In Ocean Hydrodynamics of the Japan and East China Seas,ed. by T Ichiye, Elsevier, Amsterdam, 1984. 209-224.
  • 10KANTHA L H, TIERNEY C, W.LOPEZ J W. Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 2. Altimetric and geophysical implications[J]. J.Geophys.Res., 1995, 100(C12): 25 309-25 317.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部