摘要
本文研究了随机非完整系统的样本稳定性。求解问题的主要手段是线性化方法 ,即将非线性随机系统的系数在平衡点作Taylor展开 ,取一次项后得到线性随机系统 ;根据其性质得到了非线性非完整系统的随机稳定性条件 ;
This paper studies the almost sure sample stability of stochastic nonholonomic systems chiefly by way of the linearization. Taylor expansion is first taken for the coefficient of the nonlinear stochastic nonoholonomic system omitting the higher terms, i.e., keeping only the linear terms, such that linearized stochastic nonholonomic systems are obtained. The stability problem of the perfect systems can then be studied via the linearized stochastic nonholonomic systems and regions of asymptotic stability of nonlinear stochastic nonholonomic systems are determined according to its the linearized stochastic nonholonomic systems.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2003年第1期89-92,共4页
Acta Armamentarii
基金
国家自然科学基金资助项目 (19972 0 10 )
关键词
随机非完整系统
样本
线性随机系统
渐近稳定性
振子
other subjects of mechanics, constraint of nonholonomic, stochastic perturbation, first approximation, sample stability