摘要
采用具有一个热松弛时间的L S广义热弹性理论 ,研究了一维半无限长压电杆在一端受到热冲击时的边值问题 .借助拉普拉斯正、反变换技术 ,在所考虑时间非常短的情况下 ,对问题进行了求解 ,得到了压电杆上的位移、压力及温度分布的近似解析解 ,发现应力及温度分布中分别存在两个阶跃点 ,并给出了算例 .
The theory of generalized thermoelasticity, based on the theory of Lord and Shulman with one relaxation time, is used to solve a boundary value problem of one-dimension semi-infinite piezoelectric rod with its plane boundary subjected to a sudden heat. Approximate small-time analytical solutions of displacement, stress and temperature are obtained by means of the Laplace transform and iverse transform. It is found that there are two discontinuous points in both displacement, stress and temperature solutions. Numerical calculation for temperature and stress is carried out and displayed graphically.
出处
《固体力学学报》
CAS
CSCD
北大核心
2003年第1期98-108,共11页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金重点项目 (10 13 2 0 10
50 13 50 3 0 )
高校博士点基金 (2 0 0 10 6980 18)资助