期刊文献+

粘弹性随机有限元 被引量:3

VISCOELASTIC STOCHASTIC FINITE ELEMENT
下载PDF
导出
摘要 以近似不可压缩粘弹增量有限元和摄动法为基础 ,利用增量法处理遗传积分 ,应用参数摄动考虑随机性 ,采用局部平均方法对随机场进行离散 ,通过相关结构分解减少计算量 ,发展了一种粘弹性随机有限元方法 .研究表明 ,尽管粘弹性材料本构关系具有时间相依性 ,其随机摄动格式并不存在“长期项”的影响 .应用该方法进行粘弹性结构的随机模拟 ,程序实施简单 ,计算效率较高、精度较高 . One difficult aspect of treating statistical uncertainty in viscoelastic structures is the consideration of coupled interaction between the randomness of parameters and the viscoelasticity. The near-incompressibility of some materials increases the difficulties. Based on the perturbation method and incremental FEM suitable for incompressible materials, a new type of viscoelastic stochastic finite element method is proposed. The incremental method is applied to solving the hereditary integrals, and the perturbation method is used to consider the randomness of parameters. The local averaging method is used to discretize the random field. By transforming the correlated random variables to a set of uncorrelated random variables, a simplified formulation is obtained. The influence of random parameters is discussed. Although the viscoelastic constitutive relation is time-dependent, the application of stochastic perturbation method for viscoelastic problems doesn't result in the emergence of undesirable secular terms. Numerical results reveal that the approach proposed has the advantages of the simple and convenient program implementation, and is accurate and effective for viscoelastic stochastic problems.
出处 《固体力学学报》 CAS CSCD 北大核心 2002年第4期387-396,共10页 Chinese Journal of Solid Mechanics
基金 国家杰出青年基金 (1992 5 2 0 9) 国家自然科学基金 (19872 0 76 )资助
关键词 近似不可压缩性 随机有限元 随机参数 结构分析 粘弹性材料 viscoelasticity, approximate incompressibility, stochastic finite element method, random parameter, structural analysis
  • 相关文献

参考文献10

二级参考文献56

共引文献150

同被引文献26

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126. 被引量:104
  • 3陈汝训.固体火箭发动机设计与研究[M].北京:宇航出版社,1992..
  • 4Christensen RM. A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech, 1980, 47:762~768
  • 5Swanson SR, Christensen LW. A constitutive formulation for high-elongation propellants. J Spacecraft, 1983, 20(6):559~566
  • 6Shen YP, Hasebe N, Lee LX. The finite element method of three-dimensional nonlinear viscoelastic large deformation problems. Comput Struct, 1995, 55(4): 659~666
  • 7Marques SPC, Creus GJ. Geometrically nonlinear finite element analysis of viscoelastic composite materials under mechanical and hygrothermal loads. Comput Struct, 1994,53(2): 449~456
  • 8Liu PL, Kiureghian AD. Finite element reliability of geometrically nonlinear uncertain structures. J Engrg Mech,1991, 117:1806~1825
  • 9Vanmarcke E. Random Fields: Analysis and Synthesis.Cambridge: MIT Press, 1983
  • 10李杰.随机结构系统--分析与建模.北京:科学出版社,1996(Li Jie. Stochastic Structural System-analysis and Modeling. Beijing: Science Press, 1996 (in Chinese))

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部