期刊文献+

一种改进的2n因子乘积形式的逆矩阵求解算法 被引量:2

A GENERALIZED 2n-FACTOR FORM OF THE INVERSE OF A MATRIX
下载PDF
导出
摘要 复杂结构的有限元分析需要耗费巨大的内存和计算机时间 .在此过程中 ,有限元线性方程组的求解时间占很大比例 ,因此 ,发展高效的线性方程组求解算法是提高有限元分析效率的关键 .针对矩阵求逆问题 ,该文将有限元方程组的系数矩阵视为等分块矩阵 ,并基于等分块矩阵的概念推广了传统的逆矩阵的n因子和 2n因子乘积形式 .推广后得到的这组乘积形式在适当条件下又分别可以退化到传统的逆矩阵的n因子和 2n因子乘积形式 .应用基于推广后得到的这组乘积形式的求逆算法来求解板材冲压成形有限元数值模拟中的大型有限元线性方程组 ,结果表明 ,该算法可以显著地提高大型有限元线性方程组的求解效率 . The Finite Element Analyses (FEA) of complex constructions need huge memory and consume much time. Generally it takes a large portion of time to solve the large-scale linear simultaneous equations (LLSE) involved in the FEA process. Therefore the key to improve the efficiency of that process is to shorten the solving time of that equations. The coefficient matrix of the LLSE involved in the process is treated as a uniform block matrix in this paper. To get the inverse of the matrix, the traditional n-factor form and 2n-factor form of an inverse matrix are generalized to provide two new forms based on the concept of uniform block matrix, which can degenerate into the traditional forms under some given conditions, specifically. The algorithms based on either the traditional form or the new form are coded to solve the LLSE involved in the numerical simulation of several sheet metals stamping processes. The results indicate that the algorithm based on the new form can greatly improve the efficiency of solving the LLSE involved in the FEA of complex constructions.
出处 《固体力学学报》 CAS CSCD 北大核心 2002年第4期446-452,共7页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金重点项目 (19832 0 2 0 ) 教育部重点科技攻关项目 (990 34 ) 国家杰出青年科学基金项目(10 12 5 2 0 8)联合资助
关键词 2n因子乘积形式 分块矩阵 逆矩阵 有限元 板材冲压成形 复杂结构 block matrix, inverse matrix, FEM, sheet metals stamping
  • 相关文献

参考文献1

共引文献2

同被引文献16

  • 1Qi Zhaohui Liu Yuqi Hu Ping.FAST SOLUTION FOR LARGE SCALE LINEAR ALGEBRAIC EQUATIONS IN FINITE ELEMENT ANALYSIS[J].Acta Mechanica Solida Sinica,2001,14(1):89-94. 被引量:3
  • 2孙凌玉,Stephen Bian,姚迎宪.车身薄壁梁结构轻量化设计的理论研究[J].北京航空航天大学学报,2004,30(12):1163-1167. 被引量:24
  • 3吕毅宁.车身结构刚度和振动特性设计分析的几个关键问题研究[D].北京:清华大学,2008.
  • 4DAS S, CURLEE T R, DONALD W J, et al. Supporting infrastructure and acceptability issues for materials used in new generation vehicles, ORNL/TM-13731[R]. Tennessee: Oak Ridge National Laboratory, 1999.
  • 5PATTON R, LI F, EDWARDS M. Causes of weight reduction effects of material substitution on constant stiffness components[J]. Thin-Walled Structures, 2004, 42(1): 613-637.
  • 6DAS S, CURLEE R, SCHEXNAYDER S. Materials used in new generation vehicles: Supplies, shifts and supporting infrastructure. ORNL/TM-13491[R]. Tennessee: Oak Ridge National Laboratory, 1997.
  • 7ASHBY F M. Materials selection in mechanical design[M]. Boston, MA. Butterworth-Heinemann, 1999.
  • 8NARDINI D, SEEDS A. Structural design considerations for bonded aluminum structured vehicles[R]. SAE 890716, 1989.
  • 9LI FANG, PATTON R, MOGHAL K. The relationship between weight reduction and force distribution for thin wall structures[J]. Thin-Walled Structures, 2005, 43(1): 591-616.
  • 10EDWARDS C M. A method for determining weight reduction through material substitution in automotive structures of equivalent stiffness[D]. MS, USA: Mississippi State University, 2002.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部