期刊文献+

图拟拉普拉斯矩阵的特征值 被引量:4

On the Eigenvalue of the Quasi-Laplacian Matrix of a Graph
下载PDF
导出
摘要 G为有限无向简单图.A(G),D(G)分别表示G的邻接矩阵和度对角矩阵.Q(G) =D(G) +A(G)称为图G的拟拉普拉斯矩阵,它是谱图论的研究对象.本文利用G的顶点数,边数,最大度和最小度给出Q(G)的最大特征值和最小特征值的界的估计. Let G be a finite undirected graph without loops and multiple edges. A(G), D(G) denotes the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. Q(G)=D(G)+A(G) is the quasi-Laplacian matrix of G. In this paper, we give the estimation of the largest and the smallest eigenvalues of Q(G) in terms of the vertex number, the edge number, the largest degree, and the smallest degree of G.
作者 郭曙光
出处 《淮阴师范学院学报(自然科学版)》 CAS 2003年第1期10-12,共3页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 简单图 拟拉普拉斯矩阵 特征值 simple graph quasi-Laplacian matrix eigenvalue
  • 相关文献

参考文献6

  • 1[1]Merris R. Laplacian matrices of graphs: A survey[J]. Linear A lgebra and Its Applications. 1994, 197-198: 143-176.
  • 2[2]Mohar B. Laplace eigenvalues of graphs:a survey[J]. Discrete Mathema tics. 1992,109:171-183.
  • 3[3]Cvetkovic D M, Doob M, Sachs H. Spectra of graph:theory and application s[M]. New York: Academic Press,1980.
  • 4[4]Grossman J W, Kulkarni D M. Algebaic graph theory without orientation[ J]. Linear Algebra and Its Applications. 1994,212-213:289-307.
  • 5[5]Van Den Heuvel J, Hamilton cycles and eigenvalues of graphs[J]. Linea r Algebra and Its Applications. 1995,226-228: 723-730.
  • 6[6]Desai M, Rao V. A characterization of the smallest eigenvalue of a graph [J]. Journal of Graph Theory, 1994,18(2):181-194.

同被引文献18

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部