摘要
G为有限无向简单图.A(G),D(G)分别表示G的邻接矩阵和度对角矩阵.Q(G) =D(G) +A(G)称为图G的拟拉普拉斯矩阵,它是谱图论的研究对象.本文利用G的顶点数,边数,最大度和最小度给出Q(G)的最大特征值和最小特征值的界的估计.
Let G be a finite undirected graph without loops and multiple edges. A(G), D(G) denotes the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. Q(G)=D(G)+A(G) is the quasi-Laplacian matrix of G. In this paper, we give the estimation of the largest and the smallest eigenvalues of Q(G) in terms of the vertex number, the edge number, the largest degree, and the smallest degree of G.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2003年第1期10-12,共3页
Journal of Huaiyin Teachers College;Natural Science Edition
关键词
简单图
拟拉普拉斯矩阵
特征值
simple graph
quasi-Laplacian matrix
eigenvalue