摘要
基于He和Vaidya的同步充分必要条件 ,提出了一个解决未拆分混沌系统恒等自同步的方法 .该方法将驱动系统与响应系统的误差动力系统的Lyapunov函数的导数分为小于 0或等于 0的自由项和大于 0的强迫项 .将驱动系统的变量替代响应系统的变量 ,使Lyapunov函数导数的强迫项变为 0 ,响应系统与驱动系统达到同步 .模拟结果表明 ,该方法能够实现反馈同步方案不能同步的Henon映射系统 ,并能使Bragg混沌系统同步过渡过程所占用时间减小到反馈同步过渡过程所花时间的12 % .
A method is proposed to solve the identical self-synchronization of undecomposable chaotic system based on He and Vaidya's necessary and sufficient condition for synchronization. The derivative of Lyapunov function of the error dynamic system of the drive chaotic system and the response chaotic system is divided into a free synchronous component and a forcing synchronous component. The variable of the response system is substituted with the variable of the drive system and the forcing synchronous components equal to zero so that the response system synchronizes with the drive system. Simulation shows that, compared with the feedback synchronous scheme, the method enables asynchronous Henon system to synchronize and makes the transition time of synchronization of Bragg chaotic system to decrease to 12% of the feedback synchronous scheme.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003年第4期396-398,共3页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目 (10 172 0 94
10 2 42 0 0 3)
国防科技重点实验基金资助项目 (14 360 2 0 10 1JB32 0 1)
关键词
混沌
恒等自同步
反馈同步
Bode diagrams
Chaos theory
Feedback
Lyapunov methods
Synchronization