期刊文献+

基于模糊神经网络和R/S分析的股票市场多步预测 被引量:12

Stock Market Multi-step Forecasting Based on Fuzzy Neural Networks and R/S Analysis
原文传递
导出
摘要 将输入空间划分为若干个相互重叠的模糊子空间 ,并在子空间内 ,利用线性模型对非线性系统进行局部建模 ,最后内插局部模型的输出 ,得到非线性系统的全局模糊建模 .基于 Sugeno模糊推理模型的模糊神经网络 (自适应网络模糊推理系统 ANFIS)正是上述模糊建模思想的神经网络实现的一种形式 .R/ S分析表明 ,上海股票市场的价格波动具有长期记忆性 ,因而可以预测 .基于此 ,利用 ANFIS对上证综合指数进行多步预测 。 Input space of nonlinear model is partitioned into several fuzzy subspaces. Within each subspace, a local linear model is used to model the nonlinear model. The global model output is obtained by interpolating the local model outputs. Adaptive network fuzzy inference system (ANFIS), based on Sugeno fuzzy inference model, is one way of neural network realization of the fuzzy modeling based on the ideal of local linear modeling above. The results of R/S analysis show that Shanghai stock market has long-term memory, thus possible to predict. This study combines ANFIS and FMH to implement multi-step prediction of Shanghai Stock Exchange index.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2003年第3期70-76,共7页 Systems Engineering-Theory & Practice
关键词 神经模糊建模 R/S分析 多步预测 neural fuzzy modeling R/S analysis multi-step prediction
  • 相关文献

参考文献6

  • 1[1]Yager R R, Filev D P. Essentials of Fuzzy Modeling and Control[M]. New York: John Wiley & Sons Inc, 1994.
  • 2[2]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1):116-132.
  • 3[3]Sugeno M, Kang G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988, 28(1), 15-33.
  • 4[4]Jang J S R. ANFIS: Adaptive-network-based fuzzy inference systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685.
  • 5[5]Jang J S R, and Sun C T. Neuro-fuzzy modeling and control[J]. Proceeding IEEE, 1995, 83(3): 378-406.
  • 6[6]Edgar E Peters. Fractal Market Analysis[M]. New York: John Wiley & Sons, Inc., 1994.

同被引文献97

引证文献12

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部