期刊文献+

基于特征矢量输入的神经网络测向方法 被引量:9

Direction of Arrival Estimation Method with Eigenvector-Based Radial Basis Function Neural Network
下载PDF
导出
摘要 提出了一种新的基于特征矢量的采集输入数据方法 ,经该方法训练的径向基函数神经网络 ( RBFNN)可用于码分多址 ( CDMA)系统中多源信号波达角 ( DOA)的估计 .该方法对信道噪声不敏感 ,能以较少的训练样本就可得到推广能力较好的神经网络 .仿真结果表明 ,以新方法训练的RBFNN对多源信号 DOA估计精度较高 ,实时性好 ,适用于 A new direction of arrival (DOA) estimation method with eigenvector based radial basis function neural network (RBFNN) was presented. This new method is not sensitive to noise and takes fewer training data to get RBFNN with good generalization ability. The computer simulation shows that the RBFNN trained with this algorithm is excellent at DOA estimation, and it is more suitable for real time application than classic superresolution algorithms. This DOA estimation method is promising in smart antenna of CDMA communication.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第3期373-375,379,共4页 Journal of Shanghai Jiaotong University
关键词 码分多址 径向基函数神经网络 波达角估计 code division multiple access (CDMA) radial basis function neural network (RBFNN) direction of arrival (DOA ) estimation
  • 相关文献

参考文献6

  • 1El Zooghby A H, Christodoulou C G, Georgiopoulos M. A neural network-based smart antenna for multiple source tracking [J ]. IEEE Trans on AP, 2000,48(5) .. 768- 776.
  • 2Goryn D, Kaveh M. Real-time computation of narrowband and wideband direction finding[A]. Proceeding ICASSP[C]. New York, USA:IEEE, 1988.2164-2167.
  • 3Southall H L, Simmers J A, O'Donnell T H. Direction finding in phased arrays with a neural network beamformer[J]. IEEE Trans on AP, 1995,43 (12):1369-1373.
  • 4El Zooghby A H, Christodoulou C G, Georgiopoulos M. Performance of radial basis function network for direction of arrival estimation with antenna arrays[J]. IEEE Trans on AP, 1997,45(11):1611-1617.
  • 5El Zooghby A H, Christodoulou C G. Multiple mobile user tracking with neural network-based adap tive array antennas[J]. SPIE, 1999,3708:88-97.
  • 6Wang Shu, Zhou Xilang. Extending MUSIC algorithm by using virtual array technique [A]. IEEE SouthEastCon[C]. USA: [s. n. ], 1999.82- 85.

同被引文献44

  • 1杨超,邱文杰.自适应天线中阵元间互耦的校正[J].电子学报,1993,21(3):58-62. 被引量:19
  • 2安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 3安冬,王守觉.基于仿生模式识别的DOA估计方法[J].电子与信息学报,2004,26(9):1468-1473. 被引量:11
  • 4贾立哲,魏利辉.相关干涉仪测向算法的FPGA设计实现[J].无线电工程,2006,36(12):40-42. 被引量:11
  • 5Guo Wo, Qiu T S, and Tang H, et al.. Performance of RBF neural networks for array processing in impulsive noise environment [J]. Digital SignalL Processing, 2008, 18(2): 168-178.
  • 6Wang M, Yang S, and Wu S, et al.. A RBFNN approach for DOA estimation of ultra wideband antenna array[J]. Neurocomputing. 2008, 71(4-6): 631-640.
  • 7Vigneshwaran S, Sundararajan Narasimhan, and Saratchandran P. Direction of arrival (DOA) estimation under array sensor failures using a minimal resourse allocation neural network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 334-343.
  • 8Dourado O D Doria A D, and Da Mata W. Determination of multiple direction of arrival in antennas arrays with radial basis functions[J]. Neurocomputing, 2006, 70(1-3): 55-61.
  • 9Kuwahra and Matsumoto. Experiments of direction finder by RBF neural network with post processing. IEEE Electronic Letters, 2005, 41(10): 24-25.
  • 10Shieh Ching-Sung and Lin Chin-Teng. Direction of arrival estimation based on phase differences using neural fuzzy network[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1123.

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部