期刊文献+

广义Lipschitz增生算子方程的具有误差的Ishikawa迭代的收敛性和稳定性 被引量:4

The Convergence and Stability of Ishikawa Iteration with Errors for Generalized Lipschitz Accretive Operator Equations
下载PDF
导出
摘要 设E是任意实Banach空间,T:E→E是Lipschitz增生算子,利用包含通常的Lipschitz映象和值域有界映象在内的广义Lipschitz映象,在没有条件limβn=0之下,在Banach空间中证明了含广义Lipschitzn→∞增生算子T的非线性方程x+Tx=f具有误差的Ishikawa迭代序列强收敛性,并在适当条件下证明了迭代序列的稳定性. Let E be an arbitrary real Banach space and T:E→E an generalized Lipschitz continuous accretive operator. In this paper, by using the concept of generalized Lipschitz continuous accretive operator, including the Lipschitz mappings and rangebounded mapping, under certain conditions without limβn=0, we prove that the Ishikawa iterative methods with errors converge strongly to solution of the nonlinear equation x+Tx=f (f∈E),n→∞ of the generalized Lipschitz continuous accretive operator. We also prove the stability of the iteration.
作者 李红梅
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2003年第2期116-119,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 广义Lipschitz算子 误差 ISHIKAWA迭代 增生算子 稳定性 Generalized Lipschitz operators Ishikawa iterative with errors Accretive opertors Stability
  • 相关文献

参考文献8

二级参考文献24

  • 1周海云.关于Ishikawa迭代的一点注记[J].科学通报,1997,42(2):126-128. 被引量:3
  • 2Tang C L,J Southwest China Normal Univ,1998年,23卷,5期,501页
  • 3Chang S S,J Math Anal Appl,1997年,216期,94页
  • 4Chang S S,Nonlinear Anal,1997年,30卷,7期,4197页
  • 5Wen X L,Proc Amer Math Soc,1991年,113期,727页
  • 6OsilikeMO.Iterativesolutionsofnonlinearequationsoftheφ-stronglyaccretivetype[J].JMathAnalAppl,1996,200:259~271.
  • 7ChidumeCE.HabtuZegeyeApproximationofthezerosofm-accretiveoperators[J].NonlinearAnalysis,1999,37:81~96.
  • 8BrowderFE.NonlinearmappingsofnonexpansiveandaccretivetypeinBanachspaces[J].BullAmerMathSoc,1967,73:875~882.
  • 9KatoT.Nonlinearsemi-groupsandevolutionsequations[J].JMathsocJapan,1964,19:508~520.
  • 10DeimlingK.ZerosofaccretiveoperatorsManuscriptaMath,1974,13:365~374.

共引文献42

同被引文献24

  • 1丁协平,邓磊.单调和耗散型非线性方程的迭代解[J].四川师范大学学报(自然科学版),1994,17(1):43-48. 被引量:4
  • 2龙宪军,全靖.Banach空间中关于增生算子方程解带误差的Ishikawa迭代序列[J].重庆师范大学学报(自然科学版),2005,22(4):10-13. 被引量:2
  • 3丁协平.非线性增殖和耗散算子方程的迭代解[J].四川师范大学学报(自然科学版),1996,19(6):1-12. 被引量:2
  • 4Browder F E. Nonlinear mappings of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc,1967,73:875-882.
  • 5Kata T. Nonlinear semigroups and evolution equations[J]. J Maty Soc Japan,1964,19:508-520.
  • 6Wang X. Fixed point iteration for local strictly pseudo contractive mappings[J]. Proc Amer Math Soc,1991,113(3):727-731.
  • 7Liu Q H. A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J]. J Math Anal Appl,1990,146:301-305.
  • 8Ding X P. Iteration process with errors to nonlinear equations in arbitrary Banach space[J]. Acta Math Sinca,1998,14(Supplement):577-584.
  • 9Chidume C E. Iterative approximation of fixed points of Lipschitizian strictly pseudocontractive mapping[J]. Proc Amer Math Soc,1987,99(2):283-288.
  • 10Ding X P, Deng L. Iterative solution of nonlinear equations of the monotone and dissipative types in uniformly smooth Banach spaces[J]. J Sichuan Normal Univ(Natural Science),1994,17(1):43-48.(丁协平,邓磊. 单调和耗散型

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部