期刊文献+

复杂性测度特征在肺部HRCT图像分析中的应用

Application of Complexity Measurements to Lung HRCT Image Analysis
下载PDF
导出
摘要 研究了分形维和 Lempel- Ziv(LZ)复杂性两类基于视觉复杂性的图像特征在自动区分高分辨率 CT(HRCT)上磨玻璃影 (GGO)与正常区域的表现 .研究样本包括 86个 1 5× 1 5大小的矩形感兴趣区 (ROI) ,其中 44个正常 ,42个 GGO.将从这些 ROI中提取的分形维特征和 LZ复杂性特征作为输入对线性分类器训练并对其分类性能进行评估 .结果表明 ,若将两类特征单独作为分类器的输入 ,相应的 ROC曲线下面积分别为 0 .837和 0 .90 3;当用回代法训练和测试分类器时 ,分别有 75.6%和 79.1 %的 ROI被正确分类 ,而用刀切法时 ,ROI被正确分类的比率相同 .若将两类特征的组合作为分类器输入 ,相应的 ROC曲线下面积提高到 0 .969,而总的分类正确率亦达 91 .9% This paper investigated two image features based on visual complexity measurements:the fractal dimension (FD) and the Lempel Ziv complexity (LZC), and evaluated their performance in differentiating GGOs from normal areas on lung HRCT images. The database of this study contains 86 rectangular ROIs (44 Normal, 42 GGO) of 15×15 pixels. The features of FD and LCZ extracted from these ROIs were input to a linear classifier to predict their classification. When the two features were used individually, they respectively yielded areas under the ROC curve (AUC) of 0.837 and 0.903; 75.6%/79.1% of ROIs were correctly classified when training and testing in a re substitution as well as a jackknife procedure. On condition that both features were input to the classifier, an AUC of 0.969 was achieved; meanwhile the overall accuracy increased up to 91.9%. The promising results demonstrate the FD and LZC's potential in GGO discrimination.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第2期224-227,共4页 Journal of Shanghai Jiaotong University
基金 上海市科技发展基金资助项目 ( 0 0 4 1 1 90 1 1 )
关键词 图像分析 视觉复杂性 分形维 Lempel-Ziv复杂性 image analysis visual complexity fractal dimension Lempel Ziv (LZ) complexity
  • 相关文献

参考文献10

  • 1潘纪戌 陈起航 等.肺部高分辨率CT[M].北京:中国纺织出版社,1995.155-156.
  • 2Heitmann K R, Mildenberger P, Uthmann T, et al. Automatic detection of ground glass opacities on lung HRCT using multiple neural networks[J].European Radiology,1997,7:1463-1472.
  • 3Delorme S, Zuna I, Schlegel W, et al. UIP:Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis[J].Investigative Radiology,1997,32(9):566-574.
  • 4Riglis E. Modeling complexity in visual images[D].Edinburgh:Image Systems Engineering Laboratory, Heriot-Watt University,1998.
  • 5Freeborough P A. A comparison of fractal texture descriptors[A].Proceeding of the 8th British Machine Vision Conference[C]. Colchester:BMVA,1997.420-429.
  • 6Voss R F. Random Fractal Forgeries[A].Fundamental Algorithms for Computer Graphics[C]. Berlin:Springer-Verlag,1985.805-835.
  • 7Lempel A, Ziv J. On the complexity of finite sequences[J].IEEE Transactions on Information Theory,1976,22(1):75-81.
  • 8Kaspar F, Schuster H G. Easily calculable measure for the complexity of spatiotemporal patterns[J].Physical Review A,1987,36(2):842-848.
  • 9Metz C E. ROC methodology in radiologic imaging[J].Investigative Radiology,1986,21:720-733.
  • 10Kaneko H. Fractal and its application to image analysis[J].Journal of the Institute of Television Engineers of Japan,1987,41(4):359-366.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部