期刊文献+

盲系统辨识与故障诊断 被引量:4

Blind system identification and fault diagnosis
下载PDF
导出
摘要 盲系统辨识是一种仅由系统的输出中提取系统的未知信息的一种新的基本信号处理方法.论述了盲系统辨识的基本思想及其算法,将盲系统辨识思想引入到旋转机械状态监测与故障诊断中,提出了基于盲系统辨识的机械故障诊断的方法,并以转子裂纹为例,研究了基于时序模型盲辨识的不同的裂纹位置、深度的转子裂纹参数化双谱特性,得到了一些有价值的结论,为转子裂纹的诊断提供了一种新的方法.实验结果表明,该方法是有效的,基于时序模型盲辨识的参数化双谱分析具有对故障的灵敏性及能显示检测信号的一次、二次谐波等主谐波以及描述检测信号中二次相位耦合等非线性现象. Blind system identification (BSI) is a fundamental signal processing technology, which retrieves a system's unknown information from its output only. The basic idea of blind system identification and its algorithms are discussed. The method of machine fault diagnosis based on BSI are presented. Through experiment research of a cracked rotor, the bispectrum characteristics of the cracked rotor with different crack depth and crack location were investigated using blind identification method of time series model. Some valuable conclusions were obtained, and a new approach for the diagnosis of cracked rotors was provided. The experiment results show that this approach is very efficient. The bispectrum analysis based on blind identification of time series model is sensitive to fault; displays the first, second and higher harmonics of the signal, and describes nonlinear phenomena such as second phase coupling.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第2期215-220,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50075079).
关键词 盲系统辩识 故障诊断 特征提取 双谱 Cracks Diagnosis Feature extraction Rotors Signal processing
  • 相关文献

参考文献10

  • 1HUA Y,WAX M. Strict identifiability of multiple FIR channels driven by an unknown arbitrary sequence[J]. IEEE Trans Signal Processing, 1996,44:756-759.
  • 2ABED-MERAIM K, QIU Wan-zhi, HUA Ying-bo. Blind system identification[J]. Proceedings of the IEEE, 1998,8(8):1310-1322.
  • 3TAN Hong-zhou, CHOW T W S. Blind and total identification of ARMA mode in higher order cumulants domain[J]. Industrial Electronics, IEEE Transactions on, 1999,46(6):1233-1240.
  • 4TAN Hong-zhou, CHOW T W S. Blind identification of quadratic nonlinear models using neural networks with higher order cumulants[J]. IEEE Transactions on Industrial Electronics (IE), 2000, 47(3): 687-696.
  • 5FANG Yang-wang, JIAO Li-cheng. Blind identifi-cation of nonlinear FIR Volterra channels[A]. The 5th International Conference on Signal Processing (WCC2000, ICSP2000)[C]. Beijing:[s.n.],2000.294-297.
  • 6MOULINES E, DUHAMEL P, CARDOSO J, et al. Subspace methods for the blind identification of multichannel FIR filters[J]. IEEE Transaction on Signal Processing, 1995,43: 516-525.
  • 7HUA Ying-bo, ABED-MERAIM K, WAX M. Blind system identification using minimum noise subspace[J]. Signal Processing, IEEE Transactions on, 1997,45(3):770-773.
  • 8ABED-MERAIM K, HUA Y, BELOUCHRANI A. Minimum noise subspace: concepts and applications Information[J]. Communications and Signal Processing, 1997,1(11):118-121.
  • 9魏瑞轩,韩崇昭,左东广.非线性系统广义脉冲响应函数的盲辨识[J].控制与决策,2002,17(3):278-281. 被引量:1
  • 10CHOW Tommy W S, TAN Hong-zhou. HOS-based nonparametric and parametric methodologies for machine fault detection[J]. IEEE Transactions on Industrial Electronics(IE), 2000,47(5):1051-1059.

二级参考文献7

  • 1G M Raz, B D V Veen. Baseband Volterra filters for implementing carrier based nonlinearities [J]. IEEE Trans on Signal Processing, 1998, 46(1): 103-114.
  • 2G B Giannakis, E Serpedin. Linear multichannel blind equalizers of nonlinear FIR Volterra channels[J]. IEEE Trans on Signal Processing, 1997,45(1): 67-81.
  • 3E Moulines, P Duhamel, J F Cardoso, et al. Subspace methods for the blind identification of multichannel FIR filters [J]. IEEE Trans on Signal Processing, 1995, 43(2): 516-525.
  • 4Y B Hua, K A Meraim, M Wax. Blind system identification using minimum noise subspace [J]. IEEE Trans on Signal Processing, 1997, 45(3): 770-773.
  • 5T Kailath. Linear systems [M]. Englewood Cliffs: Prentice-Hall, 1980.
  • 6方洋旺,韩崇昭.基于非线性传递函数的非线性闭环控制系统的稳定性研究[J].控制与决策,1999,14(3):199-205. 被引量:3
  • 7方洋旺,焦李成,韩崇昭.非线性有限冲激响应Volterra信道的盲辨识[J].西安交通大学学报,2000,34(12):24-27. 被引量:2

同被引文献39

  • 1邹剑,陈进,董广明.基于Wigner-Ville分布裂纹转子识别的仿真[J].上海交通大学学报,2004,38(7):1201-1204. 被引量:4
  • 2高永生,唐力伟,王建华,金海薇.基于系统特性的齿轮箱故障诊断[J].煤矿机械,2006,27(1):164-166. 被引量:2
  • 3李益民,杨百勋,史志刚,宋永胜,韩宏才,郭辉.汽轮机转子事故案例及原因分析[J].汽轮机技术,2007,49(1):66-69. 被引量:24
  • 4Comon P.Independent component analysis:a newconcept[J].Signal Processing,1994,36(3):287-314.
  • 5Cardoso J F.Blind signal separation:Statistical principle[J].Proceedings of the IEEE,1998,86(10):2009-2025.
  • 6Amari S,Cichocki A.Adaptive blind separation processing-neural network approaches[J].Proceedings of the IEEE,1998,86(10):2026-2048.
  • 7Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(10):1129-1159.
  • 8Amari S.Natural gradient works efficiently in learning[J].Neural Computation,1998,10(3):271-276.
  • 9Wax M,Sheinvald J.A least-squares approach to joint diagonalization[J].IEEE Signal Proceeding Letters,1997,4(2):52-53.
  • 10Hyvarinen A.Gaussian moments for noisy independent component analysis[J].IEEE Signal Processing Letters,1999,6(6):145-147.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部