期刊文献+

关于Katuta-Junnila问题的注记

A Note of Katuta-Junnila's Problem
下载PDF
导出
摘要 设空间X是σ-ortho-紧的且X的每一定向开复盖有σ-垫状加细,则X是次亚紧的,部分地回答了Katuta-Junnila问题. It is proved that a space X is submetacompact if it is σorthocompact and each directed open cover has σcushioned refinement. KatutaJunnila's question has been partially answered.
作者 李招文
出处 《长沙电力学院学报(自然科学版)》 2003年第1期4-6,共3页 JOurnal of Changsha University of electric Power:Natural Science
关键词 Katuta-Junnila问题 次亚紧 σ-ortho-紧 定向开复盖 σ-垫状加细 submetacompactness σ-ortho-compactness directed open cover σ-cushioned refinement
  • 相关文献

参考文献12

  • 1Katuta J, Expandability and its generalizations[J]. Fund Math, 1975,87(3) :231-250.
  • 2Junnila H. Three covering properties, Surveys in General Topology [ M ].New York : Academic Press, 1980.
  • 3Jiang S. On Junnila's problem[J]. Q and A in General Topology, 1988,7 ( 1 ) :43-47.
  • 4Yajima Y. A characterization of submetacompactness in term of products[J] . Proc Amer Math Soc, 1991,112(2) :291-296.
  • 5Junnila H.On submetacompactness[J] .Topology Proc, 1978,3(3) :375-405.
  • 6Junnila H. Paracompactness, metacompactness and semi-open covers[J].Proc Amer Math Soc, 1979,73(2) :244-248.
  • 7Fletcher P, Lindgren W. Orthocompactness and strong cech complectness in Moorse space[J]. Duke Math, 1972,39:753-766.
  • 8Scott B.Toward a product theory for orthocompactness,Studies in Topology [ M ]. New York: Academic Press, 1975.
  • 9Mizokami T. Expansion of discrete and closure-preserving families[J].Proc Amer Math Soc., 1998,102:402-406.
  • 10Gitting R. Some result on weak covering conditions[J]. Canad J Math,1974,26:1 152-1 156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部