摘要
提出一种基于滑模的神经元网络自适应控制方法,并把它应用于液压伺服系统的位置控制.基于滑模学习策略,根据从一优化了的滑模控制所得到的系统输入/输出信号,设计一神经元网络,离线训练该神经元网络的权值,然后综合一简单的自适应环节,得到完整的基于滑模的神经元网络自适应控制.仿真实验结果表明,相对于纯优化的滑模控制而言,所提出的控制方法能使系统具有响应速度快,控制精度高的特点,综合控制效果明显.
A neuron network adaptive control based on sliding mode is developed and applied to the positioning control of a hydraulic servo system. According to the system's input/output data obtained from an optimized slidingmode control, a neuron network control together with an adaptation mechanism is devised and trained offline based on a sliding mode learning strategy, which is used as an adaptive learning algorithm to train the adjustment weights of neuron network. The simulation experiment results applied to a hydraulic servo system show that the learning approach of neuron network exhibits fast convergence property and can be effectively used for online control. The results also show that the system by using the proposed control has better comprehensive properties than that of by using pure optimized sliding mode control.
出处
《长沙电力学院学报(自然科学版)》
2003年第1期39-43,共5页
JOurnal of Changsha University of electric Power:Natural Science