摘要
本文证明了热传导方程Cauchy问题当实数α>3时,只要初值φ(x)在某些Sobolev空间中的范数充分小,就有唯一的全局经典解,且当t→+∞时,这个解具有一定的衰减性。本文所用的方法使得Cauchy问题中的α的值同解与初值所在的空间紧密联系,α的值越大,解的性质越好。
we investigated the existence and uniqueness of the cauchy problem of semilinear heat transfer equation. We proved that for α>3, if the initial value ψ(x) is sufficiently small in some Sobolev spaces, there exists a unique global classic solution for the Cauchy problem. And the solution decays as t→+ ∞. The method used in this paper makes the value of α be closely combined with the spaces in which the sloution and initial value function are defined. The larger the value of α is, the better the properties of the solution are.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
1992年第3期80-88,共9页
Journal of National University of Defense Technology
关键词
偏微分方程
热传导方程
柯西问题
non—linear partial differential equations, heat transfer equation, solution of equation cauchy prolblem, global solution, classic solution, existence, uniqueness, sobolev space