摘要
根据油中溶解气体含量对电力变压器进行故障诊断,一个关键环节是如何从故障气体数据中提取有效反映故障特性的特征量。论文提出了基于特征气体谱图形状参数识别变压器故障的方法,以5种油中溶解气体:乙炔、氢气、乙烷、甲烷和乙烯的相对含量构建了故障的特征气体谱图,并将图形偏斜性、突出性等形状参数作为特征量应用于变压器的故障诊断。应用的结果表明,这种方法有效区分变压器的放电性故障、过热性故障以及"氢主导型"故障,且识别效果达到90%以上,明显优于实践中常用的三比值方法。
In fault diagnosis of power transformers based on dissolved gas analysis (DGA), a key problem is extracting the characteristic features of the transformer faults from the DGA data. A transformer fault diagnostic method was developed based on characteristic gas patterns constructed from the relative concentrations of five kinds of dissolved gases in the oil, acetylene, hydrogen, ethane, methane, and ethylene. The parameters describing these patterns were applied to diagnose transformer faults. The method effectively recognizes transformer faults such as discharge faults, thermal faults, and hydrogen dominated faults with a recognition accuracy above 90%, which is superior to the threeratio method recommend by the International Electrotechnical Commission (IEC).
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2003年第3期301-303,共3页
Journal of Tsinghua University(Science and Technology)
基金
教育部一流大学振兴计划资助项目
关键词
电力变压器
溶解气体分析
谱图
特征提取
power transformer
dissolved gas analysis
patterns
feature extraction