摘要
根据L-缬氨酸发酵过程的实验数据,利用BP神经网络进行训练,建立实验模型,实时获取生化变量的预测值并进行验证.结果表明,运用BP神经网络对L-缬氨酸发酵过程进行模拟,所建立的模型能比较精确地模拟菌体生长、底物消耗及发酵产酸过程的变化,可以为L-缬氨酸发酵生产过程提供动态模拟,具有重要的实用价值.
Experimental models were constructed using neural network to train experimental data, and the predicted values of the models were compared with the measured values. The result showed that theses models can accurately predict the time course of cell growth, glucose consumption, and valine production during the fermentation. The models can simulate the dynamics in L-valine fermentation well, and should be put into practical use.
出处
《无锡轻工大学学报(食品与生物技术)》
CSCD
北大核心
2003年第2期44-47,共4页
Journal of Wuxi University of Light Industry
关键词
神经网络
L-缬氨酸
发酵
neural networks
L-valine
fermentation