期刊文献+

卧倒门承船厢内水面最大升降值神经网络计算模型 被引量:2

Neural network models of maximum fluctuation of water surface in ship lift chamber with tumble gate operating
下载PDF
导出
摘要 运用人工神经网络原理,在通过大量学习样本对网络进行训练的基础上,建立了卧倒门启闭时升船机承船厢内水面最大升降值的神经网络计算模型(NNCM—MFWS-SLC-TGO)。根据岩滩升船机和三峡升船机的模型试验资料对网络模型的性能进行了测试。测试结果表明,所建立的神经网络模型可用于卧倒门启闭时承船厢内水面最大升降值的初步预测。通过实测,计算结果与测试数据是基本吻合的。 On the basis of network training, neural network computing models of maximum fluctuation of water surface in ship lift chamber with tumble gate operating (NNCM-MFWS-SLC-TGO) were built through the principle of artificial neural networks. The characteristics of the models were tested according to the experiment data from Yantan Ship Lift and Three Gorges Ship Lift. And the result indicates that the models may be applied to forecast maximum water level fluctuation in ship lift chamber with tumble gate operating. Furthermore, a new way and method about the study on ship lift chamber hydrodynamics were provided.
出处 《长江科学院院报》 CSCD 北大核心 2003年第2期9-12,共4页 Journal of Changjiang River Scientific Research Institute
关键词 升船机 承船厢 卧倒门 水面最大升降值 人工神经网络 ship lift chamber tumble gate maximum fluctuation of water surface artificial neural network
  • 相关文献

参考文献1

二级参考文献2

共引文献7

同被引文献22

  • 1李金波.感潮河群闸系统调度技术探讨[J].水利科技,1999(2):1-3. 被引量:1
  • 2顾正华.河网水闸智能调度辅助决策模型研究[J].浙江大学学报(工学版),2006,40(5):822-826. 被引量:13
  • 3林宝新,苏锡祺.平原河网闸群防洪体系的优化调度[J].浙江大学学报(自然科学版),1996,30(6):652-663. 被引量:7
  • 4陶建华.计算水力学和水力信息学[A]..''94全国水动力学研讨会文集[C].北京:海洋出版社,1994.803-807.
  • 5ABBOTT M B. Introducing hydrolnformatics[ J ]. Journal of Hydroinformatics, 1999,1 ( 1 ) : 3-- 19.
  • 6ABBOTT M B,BABOVIC V M,CUNGE J A. Towards the hydraulics of the hydroinformatics era[J].Journal of Hydraulic Research,2001.(4) :339-349.
  • 7吴持恭.水力学(上册)[M].北京:高等教育出版社,1982.249-251.
  • 8Dibike Y B,Abbott M B.Application of artificial neural networks to the simulation of two dimension flow[J].Journal of hydraulic research,1999,37(4):435-446.
  • 9A Cancelliere,G Giullano,A Ancarani,et al.A neural networks approach for deriving irrigation reservoir operating rules[J].Water resources management,2002,(16):71-88.
  • 10Ashu Jain,Ashish Kumar Varshney,Umesh Chandra Joshi.Short-termwater demand forecast modelling at IIT Kanpur using artificial neural networks[J].Water resources management,2001,15:299-321.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部